
Newsletter of the International SGML/XML Users’ Group h t t p : / / w w w . i s g m l u g . o r g /

In the News . . . < 1 >

President’s Report < 3 >

An Introduction to RDDL < 4 >

XML Configuration
Management < 8 >

Topic Maps and RDF < 1 4 >

Acrobat and Structured
Documents < 1 7 >

XSLT Design Patterns < 1 9 >

Calendar < 2 9 >

Bookstore List < 3 1 >

September 2001
Vol. 7, No. 3

ISSN 1463-662X

In the News . . .

XLink an Approved W3C
Standard at Last
The XML Linking Language (XLink)
Version 1.0 finally became an
a p p roved W3C Recommendation in
June. XLink provides a framework
for creating both basic unidire c t i o n a l
links and more complex linking
s t ru c t u res by allowing XML docu-
ments to assert linking re l a t i o n s h i p s
among more than two re s o u rc e s ,
associating metadata with a link and
storing links in a location separate
f rom the linked re s o u rces. On the
same day the associated XML Base
specification, which provides facili-
ties for defining base URIs for part s
of XML documents, also became an
a p p roved W3C Recommendation.
H o p e f u l l y, these two standards will
s h o rtly find their way into all the
major Web bro w s e r s .
XLink Specification:
h t t p : / / w w w. w 3 . o rg / T R / x l i n k /
XBase Specification:
h t t p : / / w w w. w 3 . o rg / T R / x m l b a s e /

SMIL Now Animated
The S y n c h ronized Multimedia
Integration Language (SMIL 2.0)
Specification became a W3C
P roposed Recommendation in June.

SMIL 2.0 defines an XML-based lan-
guage that allows authors to write
interactive multimedia pre s e n t a t i o n s
and provides a syntax and semantics
that can be used in other XML-based
languages that need to re p resent tim-
ing and synchronization. In the draft,
the existing functionality has been
modularized and new functionality
has been added, especially in the are a
of animation effects. S M I L
A n i m a t i o n p rovides a specification of
animation functionality for use with-
in XML documents. The specifica-
tion describes an animation frame-
work as well as a set of XML anima-
tion elements. It is based upon the
SMIL 1.0 timing model, with some
extensions, and will be a true subset
of SMIL 2.0.
SMIL 2.0 Specification:
h t t p : / / w w w. w 3 . o rg / T R / s m i l 2 0 /
SMIL Animation:
h t t p : / / w w w. w 3 . o rg / T R /
s m i l - a n i m a t i o n

Web Accessibility
A revised working draft for W3C’s
User Agent Accessibility Guidelines
1 . 0 was published in June. This doc-
ument provides guidelines for design-
ing “user agents” that lower barr i e r s
to Web accessibility for people with

(continued over)

Changei n t e r

CONTENTS

PUBLISHED QUARTERLY

disabilities (visual, hearing, physical, and cognitive).
User agents include HTML browsers and other types
of software that retrieve and render Web content.
The document will also benefit developers of assistive
technologies because it explains what types of infor-
mation and control an assistive technology may
expect from a conforming user agent. The associated
Techniques for User Agent Accessibility Guidelines
1 . 0 document, which provides a more compact form
of the guidelines together with information on how
they can be implemented, has also been updated.
Guidelines: http://www. w 3 . o rg / T R / U A A G 1 0 /
Techniques: http://www. w 3 . o rg / T R / 2 0 0 1 /
W D - U A A G 1 0 - T E C H S - 2 0 0 1 0 6 2 2 /

Scalable Vector Graphics Providing the We b
with a Better Image
The Scalable Vector Graphics (SVG) 1.0
Specification became a W3C Pro p o s e d
Recommendation in July. SVG is a language for
describing two-dimensional graphics in XML that
enables the integration of three types of graphic
objects: vector graphic shapes (e.g., paths consisting
of straight lines and curves), images, and text.
Graphical objects can be grouped, styled, trans-
f o rmed, and composited with previously re n d e re d
objects. SVG includes facilities for defining nested
t r a n s f o rmations, clipping paths, alpha masks, filter
e ffects, and template objects. SVG drawings can be
interactive and dynamic. Animations can be defined
and triggered either declaratively (i.e., by embedding
SVG animation elements in SVG content) or via
scripting. A free SVG viewer is available fro m
A d o b e .
Specification: http://www. w 3 . o rg / T R / S V G /
Viewer: http://www. a d o b e . c o m / s v g / v i e w e r / i n s t a l l /
m a i n . h t m l

More XHTML Events
A revised working draft for XHTML Events: An
Updated Events Syntax for XHTML and Friends w a s
published in June. This specification allows XHTML
p rocessors to uniformly integrate event listeners and
associated event handlers with Document Object
Model (DOM) Level 2 event interfaces. A subset
called basic events has been defined for use on sim-
pler devices.
Draft Specification: http://www. w 3 . o rg / T R /
xhtml-events/

IN THE NEWS . . . SEPTEMBER 2001 interChange

September 2001
Vol. 7, No. 3

i n t e r C h a n g e is published quarterly by the
International SGML/XML Users’ Group. interChange
contains articles and news about the development and
use of SGML, XML, and related standards. The
International SGML/XML Users’ Group is recognized by
the International Standards Organization (ISO) as
participating in the development of ISO 8879.

The International SGML/XML Users’ Group is a regis-
tered charity established to promote the use of ISO
8879 and to provide a forum for the exchange of infor-
mation about SGML, XML, and related standards. The
Annual General Meeting is held each year at the XML
Europe conference.

Subscription to interChange is a benefit of member-
ship of the International SGML/XML Users’ Group or
its chapter organizations. Membership is open to any
interested individual or organization.

Address membership inquiries, advertising orders,
change of address notifications, and business corre-
spondence to:

International SGML/XML Users’ Group,
Copse House
15 Upton Close,
Swindon, Wiltshire,
SN25 4UL, United Kingdom.
t: 44 1793 721106
f: 44 1793 721106
e: info@isgmlug.org

Send correspondence regarding articles in the
newsletter, press releases, and editorial inquiries to
Eamonn Neylon by electronic mail at
editor@isgmlug.org

President James Mason
Treasurer Richard Light
Secretary/Administrator Yvonne Vine
Editor Eamonn Neylon
Copyeditor Bettie McDavid Mason
Webmaster Robin Cover
Production Daniel Murphy

Authors retain copyright in the published articles. This
print compilation is copyright 2001 by the
International SGML/XML Users’ Group. While every
precaution has been taken in the preparation of this
newsletter, the publisher assumes no responsibility for
errors or omissions, or for damages resulting from the
use of information contained herein.

ISSN 1463 - 662X

http://www.isgmlug.org/

<2>

Microsoft and IBM Supplying Schema-Aw a r e
P a r s e r s
Version 4.0 of the Microsoft MSXML parser, which
was made available for public beta testing in July,
will support the full XML Schema definition, pro v i d-
ing XSD validation with both SAX and DOM inter-
faces and a Schema Object Model (SOM) that

<3>

PRESIDENT’S REPORTinterChange SEPTEMBER 2001

enables schema information to be accessed thro u g h
the interfaces. IBM has also updated its XML Parser
for Java (XML4J) to support the final version of
XML Schemas, SAX 2.0 and DOM Level 2. For
m o re details visit http://msdn.microsoft.com/xml or
h t t p : / / a l p h a w o r k s . i b m . c o m / t e c h / x m l 4 j

Extreme Markup Languages 2001
What do we mean by markup languages? In spite
of some three decades of using them and a decade
and a half since ISO 8879 was adopted, we’re still
not sure. But we’re doing some very creative think-
ing with SGML and XML nonetheless. This year’s
E x t reme Markup Languages conference in
Montréal continued several themes from last year’s ,
p a rticularly the nature of markup languages,
schema languages, and the relationship between
RDF and Topic Maps.

Last year’s conference, with Michael Sperberg -
M c Q u e e n ’s keynote on the “Meaning and
I n t e r p retation of Markup” and Allen Renear’s
“The Descriptive/Procedural Distinction Is
Flawed,” seems to have started a trend of consider-
ing what SGML and XML actually mean. This year
Wendell Piez took up the theme with his “Beyond
the Descriptive vs. Procedural Distinction,” taking
a rhetorical approach to both the intent and the
meaning of markup and providing a new look at
validation strategies. In “XML, Stylesheets and the
Remathematicalization of Formal Content,”
A n d rea Asperti and colleagues at the University of
Bologna examined formal proofs and the means of
linking the logical content of mathematical expre s-
sions to their presentation. Schema languages for
XML have proliferated re c e n t l y, and at the confer-
ence they underwent formal analysis from Henry
Thompson and Richard Tobin, as well as fro m
Makoto Murata. (Murata also presented the most
recent status of RELAX NG, which merges his
RELAX schema language with James Clark’s
TREX.) The theoretical theme of the conference fil-

President’s Report: News from Montréal

t e red its way down into specific technologies like
Topic Maps, as could be seen in “To w a rds a
General Theory of Scope,” by Steve Pepper and
Geir Ove Grønmo.

Elaine Svenonius’s keynote, “The Intellectual
Foundations of Knowledge Repre s e n t a t i o n s , ”
which presented an ontology of cataloging and
k n o w l e d g e - re p resentation systems, set the tone for
much of the conference. More than a third of the
p resentations at the conference dealt with knowl-
edge re p resentation, usually through some aspects
of Topic Maps or RDF. Indeed, a third of those
k n o w l e d g e - related presentations dealt with To p i c
Maps and R D F. The SGML community started out
just trying to capture documents in an enduring
e l e c t ronic format. Now we’ve moved far beyond
that: we’re concerned with what those documents
mean—and what the documents we can’t capture
mean. SGML and XML have moved beyond being
metagrammars for tagging text and have spawned
metalanguages for navigating inform a t i o n .

Another major theme of the conference was
i n f o rmation transformation. There were a number
of presentations and tutorials on XSL and re l a t e d
topics. Papers like “XSL and Hyperd o c u m e n t s :
Applying XSL to Arbitrary Groves and
H y p e rdocuments,” by Eliot Kimber and his col-
leagues at DataChannel, show how transform a t i o n
has moved far beyond simply applying stylesheets
to pre p a re documents for printing.

GCA, the longtime sponsor of this and other
related conferences, has become a separate org a n i-
zation from Printing Industries of America. GCA
has also changed its name to IDEAlliance.

<4>

SEPTEMBER 2001 interChange RDDL

ISO/IEC JTC1/SC34/WG3
WG3, the SC34 group responsible for Topic Maps,
met on Saturday, 11 August. SC34 has several pro-
posals out for ballot on projects related to Topic
Maps, so most of the meeting was devoted to plan-
ning rather than actual project work. Future develop-
ment of Topic Maps demands establishing a strong
model for how maps work and how they are to be
processed. WG3 already has several projects approved
or out for ballot that call for the creation of models.
The Montréal meeting decided that the model should
begin with a core, to which will be added an infoset.
Extending the models to show their relationship to
UML (Unified Modeling Language) or MOF (Meta
Object Facility), which are part of the OMG (Object
Management Group) efforts at modeling information
structures, is being considered.

The recommendations of the WG3 meeting, with
links to other documents, can be found at
http://www.y12.doe.gov/sgml/sc34/document/
0240.htm.

TopicMaps.org
Shortly after ISO/IEC 13250, the basic Topic Map
standard, was released in early 2000, a group of
Topic Map enthusiasts set out to develop a specifica-
tion for an XML interchange representation of the
standard. Last winter they released XTM 1.0 and
some supporting materials. Earlier this summer the
XTM DTD was added to the ISO standard, and
much of the work on Topic Map models went back
to SC34/WG3. The group decided to become a mem-
ber section of OASIS and transfer its remaining proj-
ects to that venue. The organizational meetings for
the new structure were held in Montréal. Eric Freese,
the last chairman of the old organization, was select-
ed as the interim chairman of the new organization.
The group hopes to have the new structure approved
and operating by the time of the XML 2001 confer-
ence in Orlando.

An Introduction to RDDL

The Resource Directory Description Language
(RDDL) was created to answer the question, “What
ought a namespace URI reference?” RDDL uses an
XHTML format in which resource elements are
embedded. Each resource element contains a simple
XLink referencing the related resource.

Background
RDDL was developed on the XML-DEV mailing list
in response to recurrent debates surrounding the
W3C XML Namespaces Recommendation. Ever since
the release of this recommendation, there has been
controversy about whether a namespace URI ought
be a dereferenceable URL and if so, what ought be
returned. Though the namespace recommendation

does not require that the URI be dereferenceable,
URIs were chosen as the mechanism of generating
unique names, and common usage of namespace URIs
prefixed with “http:” suggests that such URIs indeed
are dereferenceable. No guidance had been given as to
what, if anything, ought be returned.

In response to yet another periodic heated discus-
sion regarding the role of namespace URIs, in late
December 2000, Tim Bray suggested that a name-
space URI should dereference to some XHTML with
a bunch of XLinks. Within a couple of days, a group
of developers quickly settled on the RDDL proposal,
and within a single week code to parse the RDDL for-
mat appeared. RDDL can now be found at the end of
a number of schema-related namespace URIs, includ-
ing XML Schema and Schematron, document formats

Jonathan Borden
jborden@mediaone.net
Tufts University School of Medicine, Department of Neurosurgery
New England Medical Center #178
750 Washington Street, Boston, MA 02111

<5>

interChange SEPTEMBER 2001 RDDL

such as RSS 1.0, and software projects such as the
XSLT Community Extension Library.

XML Namespaces
A namespace is properly considered a collection of
names. Namespaces partitioned by a unique identifier
are properly the collection of names, not the parti-
tion. The XML Namespace recommendation defines a
partition mechanism without defining the mechanism
by which names are collected.

The use of URIs as a mechanism of namespace
partitioning has been controversial and confusing for
its potential user comunities. The computer science
community finds that XML namespaces differ from
traditional namespaces, which conventionally refer to
a set, whereas XML namespaces more properly refer
to an unbounded partition. For the Web community
the use of URIs which can be resolved (i.e., URLs) is
controversial because it suggests that XML name-
space identifiers “point to something,” yet no guid-
ance is provided on what they ought to reference.
RDDL is simple, solves both of these problems, and
works with the current Web infrastructure.

The Resource Directory Description Language is
an extension of XHTML Basic 1.0 with an added ele-
ment named resource. This element serves as an
XLink to the referenced resource, and contains a
human-readable description of the resource and
machine-readable links that describe the purpose of
the link and the nature of the resource being linked
to. The nature of the resource being linked to is indi-
cated by the x l i n k : r o l e attribute and the purpose
of the link by the x l i n k : a r c r o l e attribute.

The rddl:resource element is defined as:

<!ELEMENT rddl:resource (#PCDATA |
% F l o w . m i x ;) * >

That is, it can contain a mixture of text and any of
the XHTML elements in F l o w . m i x . The attributes
of the resource element are:

<!ATTLIST rddl:resource
i d ID # I M P L I E D
xml:lang NMTOKEN # I M P L I E D
xml:base CDATA # I M P L I E D
xmlns:rddl CDATA #FIXED
" h t t p : / / w w w . r d d l . o r g / "

xlink:type (simple) #FIXED
" s i m p l e "

xlink:arcrole CDATA # I M P L I E D
xlink:role CDATA
" h t t p : / / w w w . r d d l . o r g / # r e s o u r c e "

xlink:href CDATA # I M P L I E D
xlink:title CDATA # I M P L I E D
xlink:embed CDATA #FIXED "none"
xlink:actuate CDATA #FIXED "none"
>

A RDDL document is thus an XHTML document
into which resource elements have been inserted. The
resource elements can contain text or other XHTML
elements.

A proper namespace, as understood by the com-
puter science community, is created from an XML
namespace as the set of fragment-identifier–qualified
URI references contained in the RDDL document
describing the XML namespace.

When RDDL is used, a namespace name, as
understood by the Web community, references a doc-
ument that is readable by humans in popular
browsers as well as providing machine-readable links
to resources related to the namespace. For example,
an “XML browser” would be able to locate code or
plug-ins needed for the display of namespace-qualified
elements contained in embedded SVG, MathML, or
other formats.

Describing a Pizza in RDDL
The following is a RDDL document containing a sim-
ple resource: an XML Schema for a ficticious “Pizza
Description Language” as described by Leigh Dodds
(http://www.xml.com/pub/a/2001/02/28/rddl.html).

<!DOCTYPE html PUBLIC "-//XML-DEV//DTD
XHTML RDDL 1.0//EN"
" h t t p : / / w w w . r d d l . o r g / r d d l - x h t m l . d t d " >

<html xmlns="http://www.w3.org/1999/xhtml"
x m l n s : x l i n k = " h t t p : / / w w w . w 3 . o r g / 1 9 9 9 / x l i n k "
x m l n s : r d d l = " h t t p : / / w w w . r d d l . o r g / "
x m l : l a n g = " e n "
x m l : b a s e = " h t t p : / / w w w . b a t h . a c . u k / ~ c c s l r d /

e x a m p l e s / p i z z a m l / n s / " >
< h e a d >
<title>RDDL Document for the Pizza

Description Language</title>
<link href="http://www.rddl.org/xrd.css"

type="text/css" rel="stylesheet"/>
< / h e a d >
< b o d y >
<h1>RDDL Document for the Pizza

Description Language</h1>
< p >
This document provides a list of
resources associated with the Pizza
description language, PizzaML.
< / p >
< r d d l : r e s o u r c e

SEPTEMBER 2001 interChange

<6>

RDDL

x l i n k : h r e f = " h t t p : / / w w w . b a t h . a c . u k / ~ c c s l r d /
e x a m p l e s / p i z z a m l / s c h e m a . x s d "

xlink:title="The PizzaML XML Schema">
< p >
The XML Schema for PizzaML documents is
< a h r e f = " h t t p : / / w w w . b a t h . a c . u k / ~ c c s l r d /
e x a m p l e s / p i z z a m l / s c h e m a . x s d " >

available from here.
< / p >

< / r d d l : r e s o u r c e >
< / b o d y >
< / h t m l >

In this example, the resource element simply serves as
a container for text that describes the material at the
other end of the link. A resource element, however,
can do more than carry descriptive text that humans
can read. It can also indicate to a RDDL processor
what roles resource components are to play. For this
purpose, RDDL defines nature and purpose compo-
nents.

Natures and Purposes
The nature of a related resource has to do with char-
acteristics of the resource itself. The nature is related
to a resource type. (The term type has different mean-
ings in different contexts and a different term nature
was chosen so as not to further confuse an already
overloaded term.) A resource nature is a URI refer-
ence, such as the namespace URI of the root element
of the document, or a canonical URI describing the
MIME media type of the document. A Nature URI
can be any URI and is asserted by the RDDL docu-
ment describing the resource as the value of the
xlink:role attribute.

The purpose of a related resource is a URI refer-
ence that describes the purpose of the resource with
respect to the URI being described by the RDDL doc-
ument. The purpose is asserted by the value of the
xlink:arcrole attribute for the
r d d l : r e s o u r c e.

Extending the Pizza Resource
The Pizza Description Language is augmented by the
addition of several resources which describe the XML
Schema as well as several XSLT transforms converting
from the Pizza Description Language into XHTML
and into RSS 1.0:

< r d d l : r e s o u r c e
x l i n k : r o l e = " h t t p : / / w w w . w 3 . o r g / 1 9 9 9 / X S L /

T r a n s f o r m "

x l i n k : a r c r o l e = " h t t p : / / w w w . w 3 . o r g / 1 9 9 9 /
x h t m l "

x l i n k : h r e f = " h t t p : / / w w w . b a t h . a c . u k /
~ c c s l r d / e x a m p l e s / p i z z a m l /
p i z z a 2 h t m l . x s l t "

xlink:title="Transform Pizza Menu to
X H T M L " >

<!-- ... -->
< / r d d l : r e s o u r c e >

< r d d l : r e s o u r c e
x l i n k : r o l e = " h t t p : / / w w w . w 3 . o r g / 1 9 9 9 / X S L /

T r a n s f o r m "
x l i n k : a r c r o l e = " h t t p : / / p u r l . o r g / r s s / 1 . 0 / "
x l i n k : h r e f = " h t t p : / / w w w . b a t h . a c . u k /

~ c c s l r d / e x a m p l e s / p i z z a m l /
p i z z a 2 r s s . x s l t "

xlink:title="Transform Pizza Menu to
R S S " >

<!-- ... -->
< / r d d l : r e s o u r c e >

More resources can be defined to establish contexts
for validation:

< r d d l : r e s o u r c e
x l i n k : r o l e = " h t t p : / / w w w . i s i . e d u / i n -

notes/iana/assignments/media-types
/ t e x t / x m l - d t d "

x l i n k : a r c r o l e = " h t t p : / / w w w . r d d l . o r g /
p u r p o s e s # v a l i d a t i o n "

x l i n k : h r e f = " h t t p : / / w w w . b a t h . a c . u k /
~ c c s l r d / e x a m p l e s / p i z z a m l / p i z z a m l . d t d "

xlink:title="The PizzaML DTD">
<!-- ... -->
< / r d d l : r e s o u r c e >

< r d d l : r e s o u r c e
x l i n k : r o l e = " h t t p : / / w w w . w 3 . o r g / 2 0 0 0 / 1 0 /

X M L S c h e m a "
x l i n k : a r c r o l e = " h t t p : / / w w w . r d d l . o r g /

p u r p o s e s # s c h e m a - v a l i d a t i o n "
x l i n k : h r e f = " h t t p : / / w w w . b a t h . a c . u k /

~ c c s l r d / e x a m p l e s / p i z z a m l / s c h e m a . x s d "
xlink:title="The PizzaML XML Schema">

<!-- ... -->
< / r d d l : r e s o u r c e >

Well-Known Natures and Purposes
RDDL defines a hierarchy of generally useful natures
and purposes at the URLs
http://www.rddl.org/natures and
http://www.rddl.org/purposes. These documents them-
selves serve as examples of using RDDL for defining
RDDL terminologies.

interChange SEPTEMBER 2001

<7>

RDDL

The URI prefix http://www.isi.edu/in-notes/
iana/assignments/media-types/ serves as a root URI
for media types and allows creation of a nature URI
for any media type. For example,
http://www.isi.edu/in-notes/iana/assignments/media-
types/application/xml-dtd serves as an established URI
describing the nature of a DTD.

Resource elements that are intended to indicate the
nature of HTML can point to http://www.isi.edu/in-
notes/iana/assignments/media-types/text/html for
generic HTML, to http://www.w3.org/TR/html4/ for
HTML 4.0, to http://www.w3.org/TR/html4/strict for
HTML 4 Strict, and to
http://www.w3.org/1999/xhtml for XHTML.

Using RDDL in Distributed Web Applications

XSLT
An XSLT stylesheet may transform the content of a
document from one nature to another. The nature of
an XSLT stylesheet is indicated by
http://www.w3.org/1999/XSL/Transform. The pur-
pose of an XSLT stylesheet is the nature of the result
of transforming an input document having a nature of
the base URI of the XSLT resource, typically the base
URI of the RDDL document, by the stylesheet.

This convention provides for the possibility of
generating a transform of A C given known trans-
forms from A B and B C. Such a transform
might be automatically generated by chaining through
the RDDL documents describing the namespaces for
A, B and C.

SAX Filters
Similarly, an XML processing pipeline might be gen-
erated by looking for RDDL resources within name-
space URIs labeled as SAX filters implemented in
whatever language desired. For example, Java and
Python implementations of a particular namespace-
related behavior can be implemented and referenced
side by side within a RDDL document at the name-
space URI.

RDDLClassLoader
The feature of referencing code within a namespace
URI is made use of by the RDDLClassLoader Java
class. This class implements a Java class loader that
“finds” Java classes having a particular purpose
within a namespace URI. This class is almost trivially
simple:

/*
* RDDLClassLoader.java
*
* Created on March 3, 2001, 10:55 AM
*/

package org.rddl.helpers;
import java.util.SortedMap;
import java.util.Vector;
import java.util.Iterator;
import java.net.URL;

import org.rddl.Resource;
/**
*
* @author Jonathan Borden

<jonathan@openhealth.org>
* @version
*/

public class RDDLClassLoader extends
java.net.URLClassLoader {

static final String STR_NATURE_JAVA =
"http://www.rddl.org/natures#java";

static final String STR_NATURE_JAR =
"http://www.rddl.org/natures#JAR";

/** Creates new RDDLClassLoader
* @param nsUrl the namespace URI
* @param purposeURI The

<code>purpose</code> of this ClassLoader
connection

* @throws IOException
* @throws SAXException

*/
public RDDLClassLoader(String

nsUrl,String purposeURI) throws
j a v a . i o . I O E x c e p t i o n ,
org.xml.sax.SAXException{

s u p e r (b u i l d U r i L i s t (n s U r l ,
purposeURI));

}

/** This is an internal static method that
creates a URL array from the RDDL URI and
purpose
* The <code>nature</code> is either "java"

or "JAR"
* @param URI The namespace URI
* @param purposeURI The RDDL <code>pur

pose</code>
* @throws IOException
* @throws SAXException
* @return URL[] - an array of URLs -- this

is typically passed to the
* constructor of URLClassLoader()
*/

protected static URL[]
buildUriList(java.lang.String
URI,java.lang.String purposeURI) throws
j a v a . i o . I O E x c e p t i o n ,

SEPTEMBER 2001 interChange

<8>

XML CONFIGURATION

XML Configuration Management
Jim Gabriel
jim@barbadosoft.com
Barbadosoft BV
Stephensonstraat 19, 1097 BA Amsterdam, The Netherlands

Complex XML-based systems are easy to build but
i n h e rently difficult to maintain. Keeping complex
applications alive can sometimes become so diff i c u l t
that stagnation is preferable to change. Taking a leaf
out of the database gurus’ book can shed a diff e re n t
light on XML. The complexity is not the pro b l e m .
Managing the complexity intelligently is the

p roblem. A solution from the 1970s, perh a p s ?

Modeling: A Problem in XML
Carla Corken of DataChannel opened a pre s e n t a t i o n
at XML Europe 2001 in Berlin with an intere s t i n g
but highly challenging statement: “The problem with
XML is that you can’t model it.” Corken’s

org.xml.sax.SAXException {
org.rddl.Namespace ns =
RDDLURL.getNamespace(URI);
java.util.SortedMap ress0 =

ns.getResourcesFromNature(STR_NATURE_JAVA);
java.util.TreeMap ress = new
java.util.TreeMap(ress0);
r e s s . p u t A l l (n s . g e t R e s o u r c e s F r o m N a t u r e
(STR_NATURE_JAR));
java.util.Vector strArr = new
java.util.Vector();
Iterator iter =
ress.values().iterator();
while(iter.hasNext())
{

Resource res =
(Resource)iter.next();
if (purposeURI.equals
(res.getPurpose()))

s t r A r r . a d d E l e m e n t
(res.getHref());

}
int len = strArr.size();
URL[] uris = new URL[len];
URL baseURL = new URL(URI);
for(int i=0;i<len;i++){

uris[i] = new URL(baseURL,
(String)strArr.elementAt(i));

};
return uris;

}
}

Summary
RDDL provides a description, readable by both
humans and machines, of a namespace referenced at
the namespace URI. As the Semantic Web gets creat-
ed, we feel it is important for this new Web to be
built in a fashion compatible with the current HTML-
based Web. By design, RDDL based on XHTML is
readable in common browsers (which conveniently
ignore the rddl:resource elements); and, because it
contains XLinks, it is potentially readable by software
programs.

The XML community has desired an XML brows-
er that can display and manipulate any sort of XML
document. RDDL enables creating such a browser by
allowing dynamic download of new behaviors
attached to namespaces. Such changes in behavior
would, for example, enable a browser to accept
MathML or SVG elements in XHTML.

Despite misgivings among its intended audience,
the XML Namespaces recommendation has achieved
widespread adoption in the marketplace. RDDL’s cre-
ators hope that it is an acceptable solution to some of
the problems the community has had with name-
spaces. By defining a reasonable solution to what a
namespace URI might reference, RDDL allows XML
namespaces to be used in more powerful ways than as
mere unique identifiers for disambiguating elements
names across vocabularies.

Dr. Jonathan Borden is an editor of the RDDL speci -
fication. He is the director of the Open Healthcare
Group and a co-chair of the ASTM E31.25 XML
Healthcare DTD subcommittee.

interChange SEPTEMBER 2001

<9>

XML CONFIGURATION

p resentation went on to discuss a range of issues in
XML application development projects, focusing in
p a rticular on how complexity in an XML-based
application environment can rapidly spiral out of
c o n t rol in a way that is out of all pro p o rtion to the
re q u i rements.

That complexity can be so painful will come as
no surprise to any owner of a sophisticated XML-
based application.

Imagine any environment in which multiple
schemas are used (or one schema evolves thro u g h
multiple versions), and in which most or all of the
p rocessing is automated—the transformations, the
publishing, the business processes acting on the
data, the user profiling, and so on. For example,
take the XML-driven online equivalent of a tradi-
tional printed newspaper. Or a business-to-business
marketplace. Or the customer service portal for a
major service provider such as an ISP or telecommu-
nication company.

N o w, measure the cost of building that enviro n-
ment from the perspective of the person who care s
about the XML. This is no simple task. How many
DTDs or equivalent schemas need to be cre a t e d ?
How many scripts, Java classes, executables, work-
flows, and source control systems will you need to
craft? What will you use to control the stru c t u re of
the packets of XML that flow around the system so
that they can be manipulated efficiently at develop-
ment time and rapidly integrated with other pro c e s s-
es? How do you ensure a consistent and yet flexible
a p p roach to style, localization, versions, evolution,
and knowledge management? In short, how do you
model the XML part of the application? The simple
answer is that you don’t. You can’t. Only experience
can tell you what is needed.

One way to gain an understanding of the enorm i-
ty of the total cost and the extent of the configura-
tion management problem is to measure what it
would take to implement a relatively simple change
to an object used in the environment once it is up
and running, and then extrapolate that to the sum of
all the objects in the whole system. For example,
take an element that is commonly used and convert
it into an attribute of the parent element. Give the
attribute four possible values, one of which is the
default. This sounds like a simple request, but it can
be devastating in an complex environment that has
a l ready gone into pro d u c t i o n .

C h a rt all the places where you need to go and
patch things up, including any live data cre a t e d
a c c o rding to the old definition. How would you
make the change and go live again as efficiently as

possible? Would you create a test enviro n m e n t
w h e re you could modify the relevant schemas and
o b s e rve what broke? Usually, trial-and-error figure s
high on the list of techniques at this point. Ask
yourself if this is a reliable way of working. Wo u l d
you feel comfortable delegating the task to some-
body less experienced? Could anybody in your team
u n d e rtake the work? Could you hire a system inte-
grator from another company to do the work? Ask
yourself if there is any software available to help
you conceptualize the entire environment in the first
place and allow you to model the change. Ask your-
self what happens to an organization when the per-
son who understands the conceptual knowledge of a
system gets up and leaves.

The premise for a solution is simple: If you can
model something, you can usually automate much of
the process of building or implementing it. If this is
t rue, you should be able to change anything in the
model and rebuild the thing that your system pre v i-
ously built automatically. But if, as Corken states,
you cannot model XML, then this is futile conjec-
t u re. Many will point to UML as the answer. Many
h a rdened software developers, however, object to
the obscure and overly technical DTDs that UML
tools produce and point out, quite corre c t l y, that
UML-based tools are always only the starting point.
Making a round-trip through the model to re b u i l d
applications is no longer possible after the first build
because typically so much is changed that the UML
model is hopelessly out of sync. (And the jury is still
out on XMI.)

An Historical Parallel: Developing the
Three-Schema Model for Databases
L e t ’s examine how modeling entered the world of a
completely diff e rent set of IT problems, the re l a t -
ional database. Way back in the mid-1970s, the
world was embracing relational database technology
as rapidly as it is now embracing XML. Certain par-
allels exist between these spurts of pro g ress in infor-
mation technology. For example, relational data-
bases could not initially be “modeled” using soft-
w a re to build tables and relationships and to apply
the constraints necessary to enforce a set of business
rules. Computer Aided Software Engineering (CASE)
was the popular answer to that particular pro b l e m ,
although round-tripping through the model in the
CASE tool to implement changes invariably didn’t
help when changes were needed.

The fundamental problem is this: the re l a t i o n a l

SEPTEMBER 2001 interChange

<10>

XML CONFIGURATION

data model gave us a way of structuring data. There
is no mechanism in the relational model for captur-
ing business processes and enforcing business logic
in a relational database. Events are not described in
the relational model, unless you consider the Delete
event and the possible re f e rential integrity con-
straints for related data (Cascade, Nullify,
Restricted). The more expensive application develop-
ment systems (or very highly paid pro g r a m m e r / c o n-
sultants) generally provided the missing parts of the
puzzle, and often those parts were not to be found
in the database itself. Business logic is taken care of
in C programs, Perl scripts, or pro p r i e t a ry 4GL
applications, for example, none of which can be
c h a rted by a modeling tool in order to track the
i n t e rdependencies and autogenerate entire systems.
Modeling a relational database is there f o re meaning-
less. On the other hand, generating a relational data-
base from some other form of model—the output of
a CASE tool, for example—is sensible.

A database, just like an XML document, is
described by a schema. A schema describes stru c-
t u re. If you change the schema for a database, you
a re effectively changing the description of the tables
and relationships in that database. And as any data-
base designer will testify, changing the schema usual-
ly trashes the data in the database. To fix the situa-
tion, you export the affected data, drop the tables,
massage the data offline using anything you can
think of (from Perl to an Excel spreadsheet), re c re a t e
the tables according to the revised schema, and
re i m p o rt the data. If everything has gone accord i n g
to plan, you have a healthy database again.
H o w e v e r, a database is nothing without an applica-
tion to use it. Your change in the database will
b reak the applications using the database. You will
typically have a lot of work ahead of you before the
e n t i re universe of that database is synchronized with
your new version of re a l i t y.

One of the best initiatives to emerge from this
c o n u n d rum of shortcomings in the 1970s was the
t h ree-schema arc h i t e c t u re. Published in 1975 by the
ANSI X3/SPARC study group, a seemingly innocu-
ous document entitled Study Group on Database
Management Systems: Interim Report 15-02-08
went on to be adopted by ISO and find its way into
almost every undergraduate computer science degre e
course anywhere in the world. The proposal made
by this document was that database engineers
should adopt a “three-schema arc h i t e c t u re” to make
their systems easier to build, deploy, and manage.

The three schemas of database applications are
the conceptual, the external, and the internal. The

conceptual schema describes the stru c t u re of the
database for one or more applications. The concep-
tual schema hides the details of physical storage
s t ru c t u res and concentrates on describing entities,
data types, relationships, user operations, and con-
straints. The internal schema describes the physical
storage in the database. The external schemas (there
can be several) are equivalent to logical users’
views—that is, forms, windows, printed re p o rts, ser-
vices, and so on. Each external schema describes the
p a rt of the database that a particular user group (or
s o f t w a re application) is interested in and hides the
rest of the database from that user gro u p .

The single most important principle of the thre e -
schema arc h i t e c t u re is that none of the end-users of
an application needs to understand either the con-
ceptual or the internal schemas, and none of the
designers and developers of the application needs to
c a re about the internal schema (although most data-
base administrators would disagree!). In order to
facilitate this blissful ignorance of the part i c i p a t i n g
schemas, a powerful set of interfaces needs to be cre-
ated to make autogeneration of schemas possible.
Building a database application means building a
conceptual schema, then using those definitions to
build external schemas (much of which could be
autogenerated), and generating the relevant database
in whichever database management system (or sys-
tems) is being used.

In other words, a conceptual model of a part i c u-
lar business re q u i rement should result in a set of
object descriptions that can be used to generate the
relevant tables and relationships in any p ro p r i e t a ry
database management system and also provide the
c o re set of definitions in any user interface, re g a rd-
less of the hard w a re or software used to host the
application. At run time, three-schema arc h i t e c t u re
assumes the presence of interface or driver mecha-
nisms for any third - p a rty hard w a re or software ,
which means that any network protocol should be
feasible, any operating system, or any computer. A
runtime engine, or virtual machine, must exist to
handle the flow of data between various schemas
and control the reaction to events in the application.

In essence, the ANSI study document form a l l y
describes the way in which database applications
should work: somebody designs an application, a
database administrator creates tables and re l a t i o n-
ships to support that design, a user interface design-
er creates a set of forms and windows that allow the
users to interact with the application, and data is
s t o red in the database. No reinvention of the wheel
occurs at any stage, and every second of every

interChange SEPTEMBER 2001

<11>

XML CONFIGURATION

minute invested in creating a conceptual definition is
capitalized upon as efficiently as possible accord i n g
to good “write once, read many”(WORM)
principles.

For example, by capturing the business re q u i re-
ments for handling sales tax at a conceptual level in
the conceptual schema, any form that relies on that
logic to correctly handle user input can be built
f rom those conceptual definitions without the form
designer having to write the logic out all over again
in procedural code in every form. Similarly, the data-
base re q u i rements for handling sales tax corre c t l y
can be met automatically in any database system,
f rom creating the tables and relationships in the first
place to a run time situation of indexing re l e v a n t
columns and enforcing re f e rential integrity con-
straints when the user deletes re c o rd s .

The heart of three-schema arc h i t e c t u re is the abil-
ity to autogenerate from models and to provide an
i n t e rface-driven infrastru c t u re for highly open and
highly maintainable applications. A thre e - s c h e m a
compliant application can switch database back ends
and GUI front ends at will. A major change in a
t h ree-schema compliant application (such as moving
the rate of sales tax from 17.5% to 19%) should be
possible by changing one single definition in one
place in the conceptual schema, re g a rdless of where
it is actually used in other schemas, and then auto-
generating everything else. This is true “magic but-
ton” technology.

Nowadays, in the era of J2EE technology and
application servers, this open systems arc h i t e c t u re is
nothing special. Back in 1975, however, before
c l i e n t - s e rver had even been dreamed of, it was re v o-
l u t i o n a ry—so re v o l u t i o n a ry, in fact, that it is per-
haps no small wonder that the study document did
not recommend a product arc h i t e c t u re to back up
that description. Commerc i a l l y, three-schema arc h i-
t e c t u re entered not with a bang but a whimper. The
world should have reeled, but in reality the only
beneficiaries were students and, much later, the afi-
cionados of n-tier application development
principles.

To my knowledge, the only commercially success-
ful adoption of three-schema arc h i t e c t u re was by
Uniface, the Dutch open 4GL application develop-
ment system launched in 1987 (and now owned and
sold by Compuware Corporation). While sometimes
tricky to design and build, Uniface applications are
simple to maintain, and can be deployed against vir-
tually any database management system, across any
network arc h i t e c t u re, on any operating system, and
with any graphical user interface. In the case of

Uniface, the principles of three-schema arc h i t e c t u re
w e re used to make an open, maintainable system an
a ff o rdable re a l i t y.

Towards a Model for XML Systems
L e t ’s fast-forw a rd to the present day. The pro b l e m s
of configuration management in complex XML-
based applications are horrendous. A single object at
the design stage (such as a transaction ID) is used or
re f e rred to in so many diff e rent places by the time
the application has been built that the application
owners can easily spend all of their maintenance and
new development budgets in trying to fix the unex-
pected bugs that are the results of a minor
change.Our inability to predict the effects of a
change, as Corken will agree, has a lot to do with
our inability to model XML.

Many will argue, however, that the only constant
in the history of information technologies has been
the need for change. As XML comes of age, it faces
the same set of re q u i rements and problems that
apply to every other technology developed for org a-
nizational systems. A key problem is tracking the
versions in the evolution of systems as they adapt to
embrace new business needs. This problem alone, it
would appear, lies in the path of anyone attempting
to draw up a powerful object model for XML-based
applications. Conceptualizing and automating the
p rocess of configuration management re q u i res pow-
e rful version control and schema evolution, one of
the major headaches even for three-schema arc h i t e c-
t u re (solvable only via re p o s i t o ry technology and
highly sophisticated source control systems operat-
ing on objects at a very fine level of granularity).

So is it ever going to be possible to model XML
in such a way that a conceptual schema may be
built? An explosive increase in the use and accep-
tance of XML and its application in areas not antici-
pated by its original designers have led to a stagger-
ing array of interrelated specifications, standard s ,
and incentives by industry consortia to address a
g rowing set of demands on the technology. Things
a re getting more complicated by the day.

The principles of version control and the
headaches of change and schema evolution are well
understood as the result of many years of accumu-
lated knowledge and experience with the many new
technologies that have arisen since the advent of the
“computer age.” On the other hand, there are spe-
cific problems of change and evolution facing XML
technologies that differ from the same set of pro b-
lems in the past. The extra considerations lie not

SEPTEMBER 2001 interChange

<12>

XML CONFIGURATION

only in the nature of XML itself, but also in the
ways it is being used and the new application arc h i-
t e c t u res in which it plays a key ro l e .

Most XML application owners will happily agre e
that autogeneration of entire environments after
making a simple change to a definition is not re a l l y
relevant. The most important thing is the ability to
conceptualize the interdependence of all the objects
used in a system—from the transaction ID in a DTD
to the credit check carried out by a Web serv i c e
when a new customer tries to purchase more than
US$ 50K worth of goods—and to safely and re l i a b l y
know that anybody can walk onto their project and
rapidly gain a conceptual understanding of all its
various pieces. It is also important to know how to
make changes while pre s e rving the integrity of your
data and definitions. Again, this re q u i res a model.

One of the problems facing the academics, how-
e v e r, is that XML is growing so fast: trying to model
something that is developing so rapidly is half the
challenge. The early explorers have proven and
expanded the enormous potential of XML. As with
many new ideas (such as relational database theory) ,
adoption of technologies goes through adolescence
faster than the development of tools to support it.
This happens for many reasons—inevitable changes
and oversights result in a rapid evolution of stan-
d a rds offering a moving target against which to
work. As these standards have stabilized, early
adopters who have built prototype or limited scope
applications using XML are now attempting to ro l l
out solutions, expand the scope of projects, or
migrate to a new version to take advantage of
lessons learned in early phases.

L e t ’s go back to basics for a moment and attempt
to chart the parts of XML that a modeling paradigm
must address. XML had its origins as a metalan-
guage for describing the stru c t u re of documents in
e n v i ronments where any or all of the following are
t ru e :

• A range of publishing formats must be
s u p p o rted from common sourc e s .

• Strict re q u i rements must be met on the content
of documents.

• Contributors from many sources must be able
to update inform a t i o n .

In common with other storage data formats, such
as relational data, or transfer formats, such as CSF
or EDI, XML has the ability to define whether fields
may be mandatory or optional. With the emerg e n c e
of more data-oriented schema languages it now also

allows the specification of exact cardinality ranges.
In addition to these constraints, XML also defines
o rdering and makes a distinction between attributes
and elements as a means of specifying field sets.

The document-centric nature of XML makes the
location of particular fields within a data set less
absolute than, for example, relational data.
Mappings between an intermediate XML form a t
and existing storage formats exacerbate this pro b-
lem. Managing evolution in systems using XML
re q u i res management of the definitions that are
encapsulated in the schemas which describe them.

XML is easy to generate and consume in an ad-
hoc manner, but XML without rules is impossible to
manage in any coherent way. As with any other data
f o rmat, data stru c t u res in a complex system must b e
defined by a schema. XML schemas can be very dif-
ficult to write and maintain because any level of
modularization re q u i res the creation of a complex
web of files with no formal way to describe the
dependencies between them. Sophisticated XML
applications re q u i re strict data stru c t u res to be
defined in schemas. This makes processing pre-
dictable. XML, however, has a lower tolerance for
change than other data formats. XML data often
becomes unusable when changes to business ru l e s
dictate schema modifications.

U l t i m a t e l y, however, XML has no standard mech-
anism for versioning, a consequence of the industry ’s
inability to model XML at a canonical level. Simple
file comparisons tell us nothing. Current debate in
f o rums such as the technical xml-dev list makes it
clear that management of multiple live versions of a
system is being handled in an ad-hoc manner.

For example, one of the rapidly growing uses of
XML is as a medium for intersystem communication
and application integration. This has led to new
ways of looking at modeling and deploying applica-
tions. Systems may be modeled based on message
f o rmats with XML schemas being used to describe
the interfaces of distributed components. This raises
complex evolution issues. Systems must simultane-
ously support the rollout of new versions within an
o rganization and backwards or forw a rds compatibil-
ity with existing processes or data sets. Because
applications are now being made available to exter-
nal users and must deal with data over which the
o rganization has no control, new versions must be
communicated to those users in a way that allows
them to determine when and how they will incorpo-
rate these changes, and systems must be able to re c-
ognize by some means the set of validation rules that
a re applicable to an incoming message.

interChange SEPTEMBER 2001

<13>

XML CONFIGURATION

T h e re are a number of initiatives to provide plat-
f o rms for publishing schemas that re p resent inter-
faces to public services and standard vocabularies.
The challenges that remain include (1) publishing
multiple versions and localizations, (2) pro v i d i n g
i n f o rmation about cross-version compatibility, (3)
updating common components universally, and (4)
o ffering dynamic access to work in pro g re s s .

When making changes to an XML schema in a
p roduction e n v i ronment, the implementer must con-
sider a very long list of issues. For example, do the
changes result in a stricter or more relaxed schema?
How does existing data need to be modified in ord e r
to conform to the new schema? What should we do
with existing data and application software ?

Metadata as a Key to an XML Model
At first glance, the issues appear daunting. To a data
m o d e l e r, however, they re p resent a great challenge.
The scent of a solution is in the air, and it smells of
abstraction, inheritance from multiple object classes,
meta-object models, and magic button technology.
F u n d a m e n t a l l y, the missing piece of the current con-
figuration management puzzle with XML is the con-
ceptual schema. Remember, the conceptual schema
hides the details of physical storage stru c t u res and
concentrates on describing entities, data types, re l a-
tionships, user operations, and constraints. It is the
conceptual schema in a database application envi-
ronment that enables high-speed change with mini-
mum re s o u rces.

F rom a conceptual schema, everything else
should be a down translation. DTDs, schemas,
stylesheets, Java classes—nothing should be so com-
plicated that a conceptual schema cannot act as an
engine (or engine driver) to build whatever is needed
to make the conceptual definition an external or
i n t e rnal re a l i t y. Building XML databases should be
an automated step. Modifying databases when a def-
inition is modified in the conceptual schema should
also be an automated step, or at least something that
can be managed intelligently with software and fed
into a good workflow process.

And last but not least, a conceptual schema
allows an application owner to conceptualize the
e n t i re application environment. This allows a new-
comer to a software development team to rapidly
discover where everything has been used or re f e rre d
to and to model the changes in any given configura-
tion before changing anything in a deployed applica-
tion. The result: impact analysis and automated
change management utilizing the most sophisticated

schema re p o s i t o ry the world has ever seen.
H o w e v e r, the implementation of thre e - s c h e m a

a rc h i t e c t u re assumes that an agreement has been
made about a modeling language or protocol for the
conceptual schema. In the case of relational databas-
es, the relational model provided the starting point.
The relational model, as we have already discussed,
falls a long way short of supporting business
p rocesses, workflow, and other important aspects of
the software that is built around a relational data-
base. By extending the model to allow the missing
but highly interdependent other parts of the puzzle
to be described in the conceptual schema (e.g.,
events, procedural code to react to events, and user
i n t e rface pro p e rties), application developers are able
to generate not only databases but also the user
i n t e rfaces, the invisible software for handling the
business processes, the configuration files, and so
on. In modeling terms, the data model of a database
is described at one or more levels of abstraction.

Metadata (that is, data about data), is the key.
Metadata makes is possible to describe how each
object is used in any place and to chart the re l a t i o n-
ships between that object and every other re l e v a n t
object. Capturing the metadata in a relational data-
base (a data dictionary, now more commonly known
as a re p o s i t o ry or application model) provides appli-
cation developers with the wealth of inform a t i o n
that they need to build a true conceptual schema. A
p o w e rful conceptual schema provides model-driven
schema evolution, impact analysis, change manage-
ment, data validation, and data conversion, to name
but a few.

This is all well and good for relational database
applications. However, is the three-schema arc h i t e c-
t u re good for XML? Cert a i n l y, although strictly
speaking the documentation of the arc h i t e c t u re
would need custom-fitting to cater for XML. Is it
possible to model XML? Using the principles of
t h ree-schema arc h i t e c t u re, it would certainly seem
so. The trick lies in building a model that answers
the needs of application developers and then defin-
ing a mechanism for capturing and exploiting it. The
end justifies the means.

As for a model for XML, we are only just begin-
ning. The XML Schema recommendation pro v i d e s
us with an object model for XML. (DTDs, on the
other hand, offer no modeling capability whatsoev-
e r.) XML Schema, however, is the equivalent in
modeling terms to the early relational model: docu-
ments and their parts (complex types, model gro u p s ,
et al.) can be described very thoroughly indeed, but
all the important parts of the application of those

SEPTEMBER 2001 interChange

<14>

TOPIC MAPS AND RDF

documents are missing. The trick is to take the XML
Schema and extend it (considerably) with the meta-
data that describes those missing parts. Only then
can we talk of true model-driven schema evolution,
impact analysis, change management, data valid-
ation, and data conversion. This is a powerful are a
of application technology that will probably not be
realized by any of the major vendors in the XML
s o f t w a re market.

Jim Gabriel (b. 1961) was educated at the
University of Kent, Canterbury, and the University
of California, Santa Barbara, focusing on English
l i t e r a t u re. He moved into IT in 1985 via marketing

and technical writing. Learning to program in
various languages using various tools, he found he
had a predilection for database applications with
highly graphical front ends. He has written technical
documentation, developed training materials, and
taught courses in IT subjects. Having burned his
fingers badly on configuration and change manage -
ment of SGML and XML, he founded Barbadosoft
in 2000 to build CorteXML™, an XML manage -
ment platform that enables high-speed change in
complex XML enviro n m e n t s .

Topic Maps and RDF

Eric Freese
eric@isogen.com
Director of Professional Services, Midwest, ISOGEN International/DataChannel
1611 West County Road B, Suite 204, St. Paul, MN 55113
www.isogen.com

B a c k g r o u n d
Over the past couple of years, very similar claims
have been made for the W3C’s Resourc e
Description Framework (RDF) and Topic Maps
(ISO/IEC 13250:2000 and XML Topic Maps
(XTM)). The more zealous supporters have pro-
moted each as the absolute-best way to associate
a r b i t r a ry metadata with arbitrary content and to
s u p p o rt an unbounded variety of information find-
ing and other functionalities. Indeed, both have
been openly described by respected pundits as
panaceas for every kind of information manage-
ment woe, but rarely by the same pundits.

At the Extreme Markup Languages 2000 confer-
ence, held in Montreal, Canada, last summer,
p roponents of each methodology spoke about
them, with the amazing discovery that perhaps the
models had more in common than most people
imagined. This article will briefly explain each
m e t h o d o l o g y, then compare the similarities and the
d i ff e rences, and finally provide an update on the
p ro g ress and events that have occurred since last

y e a r’s Extreme confere n c e .

Topic Maps: An Introduction
To put it in a nutshell, Topic Maps are made up of
topics, occurrences of topics, and associations
among topics. Information about the topics can be
i n f e rred by examining the associations between
topics and occurrences that are linked to the topic.
The collection of these topics and associations is
what is re f e rred to as a Topic Map.

Topic Maps, as defined in ISO/IEC 13250:2000,
and XTM, as defined by To p i c M a p s . o rg, are used
to organize information in a way that can be opti-
mized for navigation. Topic Maps can be thought
of as the online equivalent of printed indexes.
Topic Maps are also a powerful way to manage
link information, much as glossaries, cro s s - re f e r-
ences, thesauri, and catalogs do in the paper world.

Topic Maps are built of units called topics. In
linguistic terms, a topic can be anything that is a
noun (for example, the president of the United

interChange SEPTEMBER 2001

<15>

TOPIC MAPS AND RDF

States). More generally, a topic is anything a user
would like to describe in some way. A topic can
have many links that point to all its occurre n c e s
(documents and Web pages about the office of the
p re s i d e n t) .

A topic can also have one or more occurre n c e s
within a set of information. In terms of the pre s i-
dent, occurrences of a topic may be in various
items such as speeches, policy statements, or We b
sites. Such occurrences are generally outside the
Topic Map document itself (although some of them
could be inside it), and they are pointed at by using
whatever mechanisms the system supports, typical-
ly HyTime addressing or XPointers.

Topics can be related together using associations
which can express a given semantic (for example,
“ G e o rge W. Bush is the president of the United
States”). Topic Map designers can define any kind
of semantics for topic associations. Associations
a re ord i n a ry links that are constrained to re l a t e
only topics together. Because they are independent
of the source documents in which topic occurre n c e s
a re to be found, these associations re p resent a
knowledge base that contains the essence of the
i n f o rmation, actually re p resenting the essential
value of the information. An unlimited number of
topics can be associated within topic associations.
Each topic in an association is assigned a role that
states its interaction with the other topics. For
example, George W. Bush may have the role of
“holder” and president may have the role of
“ o ffice” and United States may have the role of
“ c o u n t ry ” .

Topics can have various characteristics assigned
to them: names, occurrences, and ro l e s . These char-
acteristics are considered to be valid within cert a i n
limits called s c o p e s . A topic’s scope allows a pro-
cessing system to avoid ambiguities between similar
topics and their characteristics. Any assignment of
a characteristic to a topic is considered to be valid
within certain limits. For example, in order to dis-
tinguish between the president of the United States
and the president of a corporation, scopes can be
defined based on the themes “politics” and
“ b u s i n e s s . ”

RDF: An Introduction
RDF provides a model for describing re s o u rc e s .
R e s o u rces are named using Uniform Resourc e
Identifiers (URIs). As defined in the re c o m m e n d a-
tion, anything can have a URI (including Georg e
W. Bush, the United States, and the office of the

p resident). So RDF can, in theory, describe almost
anything. However, it is mainly intended to handle
re s o u rces that can be retrieved over the Intern e t .

RDF works by making statements about the
re s o u rces being described. Each statement consists
of at least three pro p e rties: a subject, an object,
and a predicate. Each of these pro p e rties is also a
re s o u rce. Pro p e rty types identify the pro p e rt i e s
associated with re s o u rces, and pro p e rty types have
c o rresponding values. Pro p e rty types express the
relationships of values associated with re s o u rces. In
R D F, values may consist of fixed values (text
strings or numbers or whatever) or refer to other
re s o u rces, which in turn may have their own pro p-
e rties. A collection of these pro p e rties that refers to
the same re s o u rce is called a d e s c r i p t i o n .

Consider the following statements: “The pre s i-
dent of the United States is George W. Bush” and
“ G e o rge W. Bush is the president of the United
States.” To the human re a d e r, the above state-
ments convey the same meaning (that is, George W.
Bush is the U.S. president). To a computer, how-
e v e r, the statements are merely diff e rent strings.
The human's ability to extract meaning from varied
syntax is much diff e rent from the capabilities of
the computer. RDF uses a three-valued model of
re s o u rces, pro p e rty types, and corresponding values
to express the semantics.

In order to enable machine processing, RDF
e x p resses semantic information by associating
p ro p e rties with re s o u rces. So, before anything
about George W. Bush can be said, the data model
re q u i res the declaration of a re s o u rce re p re s e n t i n g
him. Thus, the data model corresponding to the
statement “the president of the United States is
G e o rge W. Bush” has a single re s o u rce (United
States), a pro p e rty type (president) and a corre-
sponding value (George W. Bush).

The RDF data model additionally provides for
the description of other descriptions. Often it is
i m p o rtant to assess the credibility of a part i c u l a r
description (e.g., “The New York Times a n n o u n c e d
that George W. Bush is the president of the United
States”). In this case the description tells us some-
thing about the statement “George W. Bush is the
p resident of the United States”: that the Ti m e s
a s s e rts this to be true. Similar constructs are also
useful for the description of collections of
re s o u rces. e.g., “The United States government is
made up of the legislative, judicial and executive
branches.” Although the statement is more com-
plex, the same data model is applicable.

A Comparison of Topic Maps and RDF
Topic Maps and RDF are similar in that they both
attempt to alleviate the same problem of finding
the desired information in a sea of other, mostly
useless, information. They both do so by annotat-
ing information re s o u rces by re f e rence, not within
the items being described. There are several other
major similarities: (1) both models are very simple
and elegant at one level, but thanks to re c u r s i o n
both are also extremely powerful; (2) both models
a re designed to be extensible; and (3) both models
can be used to build semantic networks of inform a-
tion. (A semantic network is a knowledge re p re s e n-
tation technique that applies a semantic link
between two nodes that re p resent objects or
c o n c e p t s .)

Initial discussion of the two models at the
E x t reme conference last year led to the surprising
d i s c o v e ry that, at the surface, there do not appear
to be many significant diff e rences between the two
models, other than serialization syntax. The
underlying data models for the two seem to be very
s i m i l a r. The use cases also appear to be very
s i m i l a r.

The one main diff e rence is that in RDF Schema,
RDF has something Topic Maps don’t (yet): a stan-
d a rdized way of expressing an ontology and the
constraints upon it. However, a proposal for a
Topic Map schema language was off e red at the
c o n f e re n c e .

After some early discussions, it seemed possible
to model most of the concepts within Topic Maps
using RDF and vice versa. Topics could be re g a rd-
ed as RDF re s o u rces, and associations between two
topics could be used to build an RDF triple.
O c c u rrences could be modeled by another RDF
triple, in which either the re s o u rce or the value of
its pro p e rty would be a real information re s o u rc e
as opposed to an abstract topic.

Recent Developments
Much of the hallway discussion after the
R D F / Topic Map presentation in Montreal last sum-
mer had a sense of excitement that the two
methodologies may, at a minimum, interc h a n g e — o r
possibly even unite. As work on the Semantic We b
has started, re p resentatives from the RDF commu-
nity and the Topic Map community have had ongo-
ing discussions about the two models to chart the
path forw a rd for each individually as well as to
a s c e rtain how the two could intermingle. These

discussions have compared the models and deter-
mined where the strengths and weaknesses of each
exist. A goal is to provide a road map for integra-
tion and interchange of the information both can
re p resent. Several implementers have demonstrated
how Topic Maps and RDF can both be used to
model the same inform a t i o n .

Earlier this year, the XML-based re p re s e n t a t i o n
for Topic Maps known as XTM was published.
XTM has been considered a possible candidate as
the unified next generation for both models. There
is also discussion about extending RDF even fur-
ther to support the goals of the Semantic We b .
Work continues on building a community aro u n d
the XTM specification, and several vendors have
p roducts that support that specification.
Additional standards work is under way to define a
q u e ry language for Topic Maps and also a con-
straint language for defining the semantics and
intended uses of Topic Map constructs within a
given Topic Map.

A conference entitled “Knowledge
Technologies,” held in Austin, Texas, in Marc h
2001, brought together people from several are a s
of information management in a way that had
r a rely happened in the past. This gathering
allowed attendees to bridge the diff e rences between
models and methodologies to determine where
common work was being done. It will be intere s t-
ing to see how much is accomplished by the second
c o n f e rence, planned for next spring in Seattle,
Wa s h i n g t o n .

Helpful Links
RDF: http://www. w 3 . o rg / R D F /
X T M / Topic Maps: http://www. To p i c M a p s . o rg
Semantic Web: http://www. w 3 . o rg / 2 0 0 1 / s w

Eric Freese, chairman of To p i c M a p s . o rg, is a senior
consultant for ISOGEN International, a
DataChannel company. Pre v i o u s l y, he was the pre s -
ident and founder of the Electronic Data Foundry,
which was recently acquired by DataChannel. He
has over twelve years of experience in the area of
i n f o rmation and document management, with
emphasis on SGML, XML, and related standard s .
He has developed and implemented training pro -
grams and materials from elementary to graduate
level. He also has re s e a rch experience in human
i n t e rface design, graphics interface development,
and artificial intelligence.

SEPTEMBER 2001 interChange TOPIC MAPS AND RDF

<16>

interChange SEPTEMBER 2001 ACROBAT

<17>

Acrobat and Structured Documents

David Penfold
penfold@eps-edge.demon.co.uk
Edgerton Publishing Services
30 Edgerton Road, Huddersfield HD 3AD, United Kingdom
www.eps-edge.demon.co.uk

Earlier this year, Adobe released Acrobat version 5.0,
based on version 1.4 of PDF (portable document
fomat). When the first version of Acrobat was
released, back in the mid-1990s, one of the questions
that was asked was, “When is Acrobat going to
incorporate document structure and become SGML
compatible?” The answer at the time was something
like “eventually,” and few held out much hope that
this stage would ever be reached.

Well (and I was one who doubted), we were
wrong. PDF version 1.4 and Acrobat 5.0, which uses
PDF 1.4, have finally moved away from the original
PostScript foundation and incorporate structure. This
is probably not entirely unrelated to Adobe’s purchase
of FrameMaker and, with the release of Acrobat 5.0,
Adobe at last seems to have decided where
FrameMaker fits into its product portfolio. However,
it is not the purpose of this article to discuss Adobe’s
marketing plans, rather to discuss how Acrobat and
PDF have begun to move into the world of XML and
structured documents. For more detail see Portable
Document Format: Changes from Version1.3 to1.4
(Technical Note #5409;
http://partners.adobe.com/asn/developer/acrosdk/docs/
filefmtspecs/PDF14Deltas.pdf)

There are three main aspects of the changes to
PDF. The first is related to forms; the second to what
is now described as tagged PDF; and the third the use
by Adobe of XML to define metadata, which is also
an important aspect of tagged PDF. I will discuss the
three in turn.

Forms
Forms were introduced with Acrobat 4 as part of
PDF version 1.3. In the new version, however, the
functionality is greatly increased. Forms can be linked
to a database or to a Web server, so that forms can be
completed over the Web. We are all, of course, famil-
iar with HTML forms, but Acrobat forms have the
big advantage that the format remains as the format

designer intended and, certainly more important in
some environments, they can carry digital signatures
(increased security is a big feature of Acrobat 5.0,
although not an aspect I shall discuss here). It is per-
haps a drawback that Acrobat has to be running
within a browser in order to submit data and there-
fore that the Acrobat plug-in has to open within the
Web browser before the form can be displayed. One
cannot submit data from within the Acrobat Reader
(still free), which is perhaps a pity, since submission
of forms from Acrobat Reader would have meant that
forms could have been available directly on a network
or perhaps by e-mail.

The new functionality makes it easier to base
forms on existing printed forms by using scanning.
(Incidentally, there is now a plug-in that can be down-
loaded from the Adobe Web site that allows a reason-
able number of scans a day without requiring the
additional purchase of Acrobat Capture, now no
longer bundled with Acrobat; however, major scan-
ning projects will still require Capture.) The ability to
include Javascript means that dynamic forms can be
created with new fields automatically filled in on the
basis of input from other fields and reference to a
database or even a spreadsheet file. Other new fea-
tures are data validation, automatic calculation (addi-
tion, subtraction, etc.), and spell-checking within
form fields.

As Adobe itself noted, there was no support for
XML in the previous release. Data was exported in a
proprietary format called FDF (forms data format),
which was not very friendly. To be fair, Adobe pro-
vided (and still provide) a lot of information for
developers on its partners site
(http://partners.adobe.com) about how to utilize data
in this format, but it could hardly be regarded as an
open format. Now, while it is still possible to export
in FDF, one can also export in XFDF (XML-based
form data format), which is not only much simpler
and even readable, as one would expect, but will
mean that integration of Acrobat form data with

SEPTEMBER 2001 interChange ACROBAT

<18>

other applications will be more straightforward. In
order to export as XML, one needs to download the
SaveAsXML plug-in from the Adobe Web site. The
plug-in also allows the document to be saved as
HTML. For detail on SaveAsXML, see http://down-
load.adobe.com/pub/adobe/acrobat/misc/5.x/Develope
rInfo.pdf. The XML seems to be based on the names
given to data fields, so it is effectively within the pro-
grammer’s control.

Obviously, Adobe envisages the use of forms in
what are conventional contexts, such as customer
inquiries, system maintenance, etc. However, Acrobat
5.0 may provide a data input path that is easy to set
up for XML-based applications. After all, much of
the underlying work has already been done by Adobe.

Tagged PDF
Tagged PDF has been introduced to solve a number of
problems, which Adobe brings together under the
term “making accessible.” The most important of
these are: making documents available to people with
visual handicaps (the document is “read” out using
speech synthesis); allowing export of PDF files in RTF
format, so that PDF is now no longer a “cul-de-sac”;
and enabling text reflow so that PDF can be viewed
on hand-held devices and WAP phones.

If one creates PDF using either FrameMaker 6 or
the new macros for Word 2000, then any text styles
are taken into the PDF as tags, which remain associ-
ated with the content in any subsequent export. If
PDF is created in other ways, there may be no tags.
And certainly a PDF created under Acrobat 3 or
Acrobat 4 will have no tags. However, one can down-
load from the Adobe Web site a plug-in for Acrobat
5.0 that is called “Make accessible.” This analyzes the
PDF and “guesses” the structure. For straightforward
documents it generally gets it right. However, with
complex documents, particularly if they have been
scanned in, there can be problems that need to be
sorted out manually. Manual adjustment of the tags,
which is of course possible, is fine for a small number
of documents. However, if one has a large number of
documents, a test is advisable, because even a small
percentage can involve many hours of hand-fixing.

PostScript and thus earlier versions of PDF have
no concept of document structure; they essentially
describe where to put an image, be it a picture or a
string of characters, on a page. PostScript is, after all,
a page description language. Adobe is now saying
that PDF has broken away from PostScript.
Previously, for example, if one selected and copied
text on a PDF page, then there was a good chance

that columnar text would come out in an incorrect
order. This, of course, means that it is useless for
speech synthesis, for export as RTF, and for reflowing
to fit on a small screen. Now, however, after a file has
been “made accessible” (i.e., tagged), Acrobat knows
what the order of the text is. It has to be admitted
that the tagging is fairly basic, with a distinct similari-
ty to HTML, but such simplicity will not necessarily
be important, and certainly not for speech synthesis
or reflowing. Another aspect of tagging and making
accessible is that different types of components can be
handled in different ways, so that, for example, tables
are not represented in WAP/PDA viewing, while
images can be replaced with descriptive text for
speech synthesis. This begins to touch on the topic of
metadata, which is discussed in the next section.

In summary, tagged PDF does not use XML per
se, although an export to PDF from
FrameMaker+SGML that has an XML structure will
carry that structure through to an export (e.g., in a
form). However, this is a big step by Adobe, and it is
clear that future versions of Acrobat and PDF will
move even closer to structured documents, particular-
ly as there is a possibility that FrameMaker and
FrameMaker+SGML will merge in the next release. If
that actually happens, then it seems likely that the
integration with PDF will become even closer.

Metadata
There was metadata in PDF 1.3, stored in a dictio-
nary. However, version 1.4 introduces a different
model of how the metadata is stored, so that metada-
ta can be associated either with the entire document
or with individual components. There are two main
reasons for this. One is to make metadata for PDF
documents more easily available to Web search
engines, while the other relates to one of the main
uses of PDF, mainly in the printing industry, where
metadata is associated with graphics in a PDF-based
workflow. The new model means that metadata can
be accessed by software later in the process.

The metadata will be represented in a format
based on XML and RDF, to be defined in a new doc-
ument entitled Adobe XAP Metadata Framework.
XAP stands for eXtensible Authoring and Publishing
Metadata Framework and is intended to be adopted
more widely than just by applications that process
PDF. XAP includes a method to embed XML data
within non-XML data files in a platform-independent
format that is easy to locate by scanning the docu-
ment files, rather than parsing them.

While the XAP document is not yet available,

XSLT DESIGN PATTERNS

<19>

interChange SEPTEMBER 2001

there is some information in Portable Document
Format: Changes from Version1.3 to1.4, and Chuck
Myers (http://www2.gca.org/knowledgetechnolo-
gies/2001/proceedings/Myers%20Slides.pdf) gives a
considerable amount of detail as well as some sample
XAP metadata. This presentation also gives indica-
tions of the direction in which Adobe is moving.
XML is definitely an important item on Adobe’s
agenda.

David Penfold is a writer, editor, and publishing con -
sultant (Edgerton Publishing Services). Trained as a
physicist, he began his publishing career in academic
journals with the International Union of
Crystallography and then moved to the world of type -

setting, working on many early disk and database
conversion projects, including the Revised English
Bible, for the Charlesworth Group in Yorkshire. He
was project manager for the Electronic Journals on
SuperJanet (SuperJournal) project in 1993 and has
advised many U.K. publishers on production, content
management, and implementing SGML. He is cur -
rently chairman of the British Computer Society
(BCS) Electronic Publishing Specialist Group and a
member of the BCS Publications Board. He is also an
evaluator and reviewer for the European Commission
Directorate General Interactive Electronic Publishing.
His publications include several books and numerous
articles, mainly concerned with electronic and conven -
tional publishing and related computing topics.

XSLT Design Patterns

Jeni Tennison
mail@jenitennison.com
Jeni Tennison Consulting Ltd
4 Dudley Court, Beeston, Nottingham NG9 3HZ, United Kingdom
www.jenitennison.com/consulting

As with any programming language, using XSLT
involves more than knowing about what constructs
can be used. Most real-world applications require
convoluted transformations that can be achieved only
by bringing together XPath functions and XSLT ele-
ments and attributes in a complex structure. In addi-
tion, stylesheets need to be extensible, maintainable,
and reusable. This paper discusses the design patterns
that can help the XSLT author to create XSLT appli-
cations, ranging from low-level programming idioms,
through transformation essentials such as recursion
and looping and sorting and grouping, to higher-level
issues such as general processing methods and com-
bining stylesheets.

Introduction
XSLT is a programming language that’s specifically
designed to help you access, query, and manipulate
XML. It's not a general programming language; it’s
designed for one thing: to take in XML and output
something else. If you have some XML and you want

to change it into another vocabulary so that you can
share it with a partner organization, or format it so
that you can display it on the Web, or analyze it to
create a bar chart, then XSLT is the language for you.

Now that’s not to say that XSLT is perfect, even at
doing what it’s designed to do. Real applications have
a vast variety of requirements, and there’s no way
that such a young language, even built on all those
years of experience with DSSSL, can meet them all.
However, just like any other programming language,
XSLT is flexible enough that you can usually bend it
to do what you want it to do; what’s more, you can
often do it in several different ways.

The purpose of this paper is to go through some
of the common things that people want to do in
XSLT and talk about the best way to do them.
Unfortunately, there isn’t enough space here to go
through all the alternatives or to give lots of exam-
ples. Nevertheless, the problems that I describe here
are ones that crop up repeatedly on XSL-List
(http://www.mulberrytech.com/xsl/xsl-list) and have
been discussed and used several times. The solutions

are designed to score highly on three criteria:

efficiency—how quickly the code will be run by an
XSLT processor,
readability—how easy it is for someone to read
and understand the XSLT code, and
maintainability—how easy it will be to change and
extend the code in the future.

You’ll notice that many of the design patterns in
this paper have some strange name associated with
them. Sometimes they’re hard to remember, and often
they’re hard to know how to pronounce, but it’s good
to recall the inspired and inspiring people who came
up with shortcuts and workarounds for the rest of us.

I’m going to start with the small design patterns:
the programming idioms that can be used in XPath
and XSLT. Then I’ll move up a notch to talk about
recursion and iteration, controlling the flow within
XSLT stylesheets. Following that, I’ll cover some of
the larger problems to do with sorting and grouping.
Finally, I’ll talk about some common stylesheets that
can be used as the basis of greater things.

Programming Idioms
In this section, I’ll cover some of the programming
idioms that can be useful in constructing XPaths or in
doing some of the smaller bits of code.

The Kaysian Method: Testing Identity
Testing the identity of a node against another node is
an essential component of quite a few techniques in
XSLT, most notably the Muenchian Method. One
way of doing this is to test whether the unique identi-
ties of two nodes are the same, using either an identi-
fying attribute (what attribute you use depends on the
XML source vocabulary) or the unique ID generated
by the g e n e r a t e - i d () function.

g e n e r a t e - i d (n o d e 1) = generate-id(n o d e 2)

The Kaysian Method uses the fact that node sets
never hold more than one copy of the same node. If a
node set is made up of a union between two nodes,
and both nodes are the same node, then the resulting
node set will contain only one node. So, if counting
the nodes in the node set gives you the value 1, then
the nodes are the same.

c o u n t (n o d e 1 |n o d e 2) = 1

Extending this, the same method can be used to
test if a node is part of a set. If it is, then the union of
the node with the set will result in a node set that is
the same length as the original node set.

c o u n t (n o d e |n o d e - s e t) = count(n o d e - s e t)

Similarly, you can work out whether a node set is
a subset of another set of nodes. If it is, then the
union of the subset with the superset will result in a
node set that is the same length as the original super-
set.

c o u n t (s u b s e t |s u p e r s e t) = count(s u p e r s e t)

Namespace-Independent Attribute Matching
Testing whether an element is not named something is
relatively easy to do with XPath:

n o t (s e l f : : n a m e s p a c e - p r e f i x :e l e m e n t - n a m e)

However, the s e l f:: axis doesn't give access to
attributes. Lack of attribute access is irritating
because using XPath node tests to check the names of
nodes involves some very clever namespace matching
behind the scenes, and it would be nice to take advan-
tage of it.

One possibility is to use l o c a l - n a m e () and
n a m e s p a c e - u r i () to identify whether the attribute
belongs to a particular namespace:

not(namespace-uri() = n a m e s p a c e - u r i and
local-name() = a t t r i b u t e - n a m e)

There’s nothing wrong with this, but having to
write out the URI of the namespace is a little ugly.

Fortunately, you can take advantage of the fact
that each element can have only one attribute with a
particular name. It’s easy to identify the attribute
called that (if there is one), and then test whether that
attribute is the same as the one you’re looking at. You
can do this in two ways, using g e n e r a t e - i d ():

generate-id() != generate-id(../@n a m e
s p a c e - p r e f i x :a t t r i b u t e - n a m e)

or using the Kaysian Method described above:

c o u n t (. | . . / @ n a m e s p a c e - p r e f i x :a t t r i b u t e -
n a m e) != count(../@n a m e s p a c e -
p r e f i x :a t t r i b u t e - n a m e)

<20>

SEPTEMBER 2001 interChange XSLT DESIGN PATTERNS

The Becker Method: Getting Conditional Strings
One of the more frustrating limitations of XPath is
that it doesn’t support an if function that allows you
to choose what string or number to return based on a
boolean expression. Getting a boolean value is obvi-
ously very easy; getting different node sets is relatively
easy:

n o d e - s e t - i f - t r u e [b o o l e a n - t e s t] |
n o d e - s e t - i f - f a l s e [n o t (b o o l e a n - t e s t)]

However, to define a variable that can hold one of
two strings depending on a boolean condition, then
the normal pattern is

<xsl:variable name="v a r i a b l e - n a m e " >
< x s l : c h o o s e >

<xsl:when test="b o o l e a n - t e s t " >
v a l u e - i f - t r u e < / x s l : w h e n >

< x s l : o t h e r w i s e >
v a l u e - i f - f a l s e < / x s l : o t h e r w i s e >

< / x s l : c h o o s e >
< / x s l : v a r i a b l e >

Not only is this fairly verbose, it actually creates a
result tree fragment variable rather than a string vari-
able.

Getting around this isn’t pretty, but you can do so
by taking advantage of the s u b s t r i n g (). The
s u b s t r i n g () function takes three arguments: the
string, the first character of the substring you want,
and (optionally) the number of characters in the
string (if it isn’t specified, then you get the rest of the
string).

If the second argument is infinity, then none of the
characters in the string is selected, whereas if the sec-
ond argument is one (and there’s no third argument),
then all the characters are selected. One way of mak-
ing infinity is to divide a number (say 1) by z e r o
(whereas you can get one by dividing 1 by 1). When
interpreted as a number, true is given the value 1
and false is given the value 0.

The pattern is thus the following:

c o n c a t (s u b s t r i n g (v a l u e - i f - t r u e ,
1 div b o o l e a n - t e s t) ,
s u b s t r i n g (v a l u e - i f - f a l s e ,
1 div not(b o o l e a n - t e s t)))

You can use this concatenation of strings to get
numbers as well as strings conditionally.

The Allouche Method: Managing Whitespace
One of the difficulties when creating an XSLT
stylesheet is getting it to put whitespace where you
want whitespace and not put whitespace where you
don’t want whitespace. If you type some text content,
then any whitespace around that text gets added to
the result, with the result that indents in your
stylesheet get carried over to your output no matter
how much you adjust the indent of your
xsl:output element.

To prevent spurious whitespace being added, you
can use the xsl:text element, which essentially
brackets off the text that you want to add to the out-
put from the whitespace that you’re using to make it
look pretty in the stylesheet:

< x s l : t e x t > t e x t < / x s l : t e x t >

Sometimes, using x s l : t e x t can get very labori-
ous. For example, adding brackets around the value
of the current node without adding unnecessary
whitespace involves:

<xsl:text>(</xsl:text>
<xsl:value-of select="." />
<xsl:text>)</xsl:text>

Often, this bracketing can be alleviated by using
the c o n c a t () function to concatenate the text and
the relevant expressions together:

<xsl:value-of select=
"concat('(', ., ')')" />

Sometimes, however, it can’t. In these cases,
Allouche’s Method comes into its own. In Allouche’s
method, an empty x s l : t e x t element is used to sepa-
rate unnecessary whitespace from the text that you
want. If there is only whitespace between it and the
preceding element, then that whitespace is ignored; if
there is only whitespace between it and the following
element, then that whitespace is ignored.

<xsl:text />
(<xsl:value-of select="." />)

<xsl:text />

Recursion and Iteration
In this section I’ll talk about design patterns for con-
trolling flow in XSLT. There’s a danger here: because
XSLT is a declarative language, people with back-
grounds in procedural languages often make it hard

<21>

XSLT DESIGN PATTERNSinterChange SEPTEMBER 2001

to start thinking in a way that helps them to write
XSLT to do what they want it to do. They may think
that they want a loop to iterate a number of times,
but actually want to collect that number of nodes and
process them as a group. However, there are obvious-
ly cases where the equivalent of a procedural method
is much easier to work with.

The Piez Method: Iterating a Number of Times
It can often be useful to add the same thing to your
output multiple times. In cases involving repeated
copies of a character, you can use the s u b s t r i n g ()
on a string consisting of that character repeated many
times. The following, for example, allows you to
specify the number of tabs to be included:

s u b s t r i n g (' & # x 9 ; & # x 9 ; & # x 9 ; & # x 9 ; & # x 9 ; & # x 9 ;
& # x 9 ; & # x 9 ; & # x 9 ; & # x 9 ;', 1, t i m e s)

The above method works only for strings, and
best for characters. An alternative method has to be
used for elements or other result tree fragments. One
method is to define a recursive template that takes the
number of repetitions as a parameter. It outputs the
content and if the number of repetitions is more than
one, calls itself with the counter dimished by one:

<xsl:template name="repeat">
<xsl:param name="count" select="1" />
<xsl:param name="content" />
<xsl:copy-of select="$content" />
<xsl:if test="counter > 1">

<xsl:call-template name="repeat">
<xsl:with-param name="count"
select="$count - 1" />

< / x s l : c a l l - t e m p l a t e >
< / x s l : i f >

< / x s l : t e m p l a t e >

This template is called with the $count param-
eter set to the number of times the content should be
repeated:

<xsl:call-template name="repeat">
<xsl:with-param name="count"

s e l e c t = " t i m e s " />
<xsl:with-param name="content">

c o n t e n t < / x s l : w i t h - p a r a m >
< / x s l : c a l l - t e m p l a t e >

One disadvantage of this method is that it can be
deeply recursive, which may cause problems with
some XSLT processors. Another irritation is that call-
ing the template is quite verbose.

The Piez Method uses the xsl:for-each

element to iterate a number of times. The x s l : f o r -
e a c h element selects a number of nodes and then
runs once for each of those nodes. If the right number
of nodes are selected, then the content runs the right
number of times.

The nodes that are used in the Piez Method can
come from anywhere: they are never used in the con-
tent of the x s l : f o r - e a c h and so don’t have to be a
particular type or have a particular value. One good
source of nodes is the stylesheet itself. If you are
going to use this technique a lot, it might be worth
setting up a global variable to hold them:

<xsl:variable name="lots-of-nodes"
select="document('')//node()" />

Once this has been set up, the design pattern for
looping a number of times with an x s l : f o r - e a c h
element is

<xsl:for-each select="$lots-of-nodes
[position() <= t i m e s] " >c o n t e n t
< / x s l : f o r - e a c h >

There are two things to watch out for when you
use this method. The first is that you have to make
sure that the number of nodes in the set you’re using
as a basis for the iteration (the $ l o t s - o f - n o d e s
variable, for example) is greater than the maximum
number of times you'll ever want to repeat the con-
tent. The second is that within the x s l : f o r - e a c h,
the current node changes; if the content that you
want repeated relies on values from the current node,
then you will need to set up variables to use them
within the x s l : f o r - e a c h.

Finding a Maximum
The problem of finding the maximum value for an
expression is a good example of a range of problems
that involve working out a single value from a num-
ber of values held in a node set. Finding out the maxi-
mum node value for a set of nodes is relatively easy:

n o d e - s e t [n o t (node-set > .)]

However, this solution will get vastly more ineffi-
cient the more nodes there are in the node set. It also
doesn’t work if the value that you want to find the
maximum for is calculated based on a node rather
than simply being its string value.

Another method to get the maximum is to sort the
nodes in descending order based on the calculated

<22>

SEPTEMBER 2001 interChange XSLT DESIGN PATTERNS

value that you’re after, then pick off the first one and
return that:

<xsl:for-each select="n o d e - s e t " >
<xsl:sort select="e x p r e s s i o n "

order="descending" />
<xsl:if test="position() = 1">

<xsl:value-of select=" e x p r e s s i o n " />
< / x s l : i f >

< / x s l : f o r - e a c h >

The problem with this method is, again, that it
involves testing the calculated value for each of the
nodes against the calculated value for a number of
other nodes. The more nodes you have, the less effi-
cient this gets.

The alternative solution that gets around this
problem is to step through the nodes one by one.
There are several recursive solutions that can be used;
the best limits the depth of the recursion while ensur-
ing that each node is visited once and only once. The
recursive template at the heart of this method is a
noded template that works out the value for the cur-
rent node, then checks to find the next node that has
a larger value. If there is a node with a larger value,
then it applies templates to that node; if not, then it
returns the value for the current node.

<xsl:template match="node()" mode="maximum">
<xsl:variable name="value"

s e l e c t = " e x p r e s s i o n " />
<xsl:variable name="next"

s e l e c t = " f o l l o w i n g - s i b l i n g : : n o d e ()
[e x p r e s s i o n > $value][1]" />

< x s l : c h o o s e >
<xsl:when test="$next">

<xsl:apply-templates
select="$next" mode="maximum" />

< / x s l : w h e n >
< x s l : o t h e r w i s e >

<xsl:value-of select="$value" />
< / x s l : o t h e r w i s e >

< / x s l : c h o o s e >
< / x s l : t e m p l a t e >

To use this method, the nodes must all be related
to each other so that it’s easy to step from one to the
next. Setting this up involves creating a result-tree
fragment that acts as a new document: this facility is
available only in XSLT 1.1 or with extension func-
tions that turn result-tree fragments into node sets
that are available in most XSLT processors.

<xsl:variable name="node-set">
<xsl:copy-of select="n o d e - s e t " />

< / x s l : v a r i a b l e >

With this node set in place, the maximum can be
found by applying templates to the first node in the
node list in the m a x i m u m mode:

<xsl:apply-templates select="$node-set[1]"
mode="maximum" />

Sorting and Grouping
Sorting and grouping nodes in different ways are the
more common complex requirements from XSLT.

Sorting in Arbitrary Order
XSLT provides the x s l : s o r t element for sorting
nodes when iterating over them with x s l : f o r - e a c h
or applying templates to them with x s l : a p p l y -
t e m p l a t e s. The x s l : s o r t element allows you to
sort either alphabetically or numerically, in ascending
or descending order. However, it doesn’t let you sort
in arbitrary order such as first, second, third
or January, February, March.

The first step to sorting in arbitary order is to
define that order. This involves making a list of
nodes, in the order you want them in, with the values
that you have in your source XML. For example, you
need to set up months with something like this:

< m o n t h > J a n u a r y < / m o n t h >
< m o n t h > F e b r u a r y < / m o n t h >
< m o n t h > M a r c h < / m o n t h >
< m o n t h > A p r i l < / m o n t h >
. . .

These months need to be made accessible as a
node set through a variable, either by defining them
within a variable in XSLT 1.1 (or with an appropriate
extension function) or by defining them in the
stylesheet or another document and accessing them
through the d o c u m e n t () function. For the sake of
this example, let's say that I've defined them within a
$ m o n t h s variable.

Now, given a month name, I can retrieve its posi-
tion among its peers using

count($months[. = current(@month)]/
p r e c e d i n g - s i b l i n g : : m o n t h)

Sorting on this position will put the nodes I’m
sorting in the same, arbitrary, order as I’ve defined:

<xsl:for-each select="$dates">
<xsl:sort select="count($months

<23>

XSLT DESIGN PATTERNSinterChange SEPTEMBER 2001

[. = current(@month)]/preceding-
sibling::month)" data-type="number" />
. . .

< / x s l : f o r - e a c h >

Grouping by Position
There’s often a requirement in XML+XSLT applica-
tions, especially those creating HTML, to show only
part of the data at a time. You might want to let peo-
ple page through tables of information, for example.
These subsets of data are based on the number of
items that they contain.

The first step is to identify the first item in the
group. Often in paging applications, this is passed
into the stylesheet as a parameter:

<xsl:param name="show" select="1" />

The first item in the only group to be shown can
then be identified with the expression:

n o d e - s e t [n u m b e r ($ s h o w)]

In applications where several groups are displayed
at the same time, such as having the headers of a
table repeat every 20 rows, then you have to pick out
those items that are first in each group according to
their position. If you want groups of size 20, for
example, then the first items in each group are the
1st, 21st, 41st (and so on) nodes. These nodes can be
picked out with the expression:

n o d e - s e t [position() mod g r o u p - s i z e = 1]

Once the first item in a group is identified, it’s rel-
atively easy to get the rest of the items in the group. If
we have groups of 20 nodes, then starting from the
first node, they will be the next 19 nodes. Usually the
items for the group are siblings within the source
XML, so the XPath for gathering the items is

. | following-sibling::i t e m - n o d e - t e s t
[position() < g r o u p - s i z e]

Putting this together, a typical application for
grouping by position applies templates to the first
nodes in a group in g r o u p mode:

<xsl:apply-templates select=" i t e m - n o d e - t e s t
[position() mod g r o u p - s i z e =
1]" mode="group" />

There is then a template matching the items in
g r o u p mode, which gathers the group together and

adds elements around it. To give the content of the
group, it then applies templates to the items in the
group in item mode:

<xsl:template match="i t e m - n o d e - t e s t "
m o d e = " g r o u p " >

< g r o u p i n g - e l e m e n t > g r o u p - h e a d e r
<xsl:apply-templates select=". | following-

s i b l i n g : : i t e m - n o d e - t e s t [position() <
g r o u p - s i z e]" mode="item" />
g r o u p - f o o t e r < / g r o u p i n g - e l e m e n t >

< / x s l : t e m p l a t e >

Finally, there is a template that matches the items
in i t e m mode to give the output for each item within
the group:

<xsl:template match="i t e m - n o d e - t e s t "
mode="item"> i t e m - c o n t e n t < / x s l : t e m p l a t e >

The Muenchian Method: Grouping by Value
The Muenchian Method of grouping is one of the
more well-known design patterns. It allows you to
group items according to some attribute or element
value, or even combinations of these values. It follows
the same basic pattern as grouping by position,
shown above, but also draws on methods of testing
node identity and the k e y () function.

As with grouping by position, the Muenchian
Method is divided into two stages: finding the first
item in a group and identifying the rest of the items in
the group. In the Muenchian Method, the groups are
defined using a key to make this easier. The key is
defined with the x s l : k e y element:

<xsl:key name="k e y - n a m e " match="i t e m -
n o d e - t e s t " use="g r o u p i n g - p r o p e r t y " />

A typical key definition for grouping e m p l o y e e
elements by their manager attribute, for example,
would be

<xsl:key name="employees-by-manager"
match="employee" use="@manager" />

Once a key has been set up, the k e y () function
can be used to retrieve all the items that have a par-
ticular value for the grouping property:

k e y (k e y - n a m e , k e y - v a l u e)

For example, to find all the employees that are
managed by W i l m a, you can use

<24>

SEPTEMBER 2001 interChange XSLT DESIGN PATTERNS

key('employees-by-manager', 'Wilma')

Given this expression, the first item in each group
can be identified by the fact that it is the first item
that is retrieved when the key is used with a particu-
lar key value. For example, if F r e d is the first
employee that's retrieved to with the above use of
k e y (), then he should be first in the group of
employees managed by W i l m a. Testing whether an
item is the first item in the group it belongs to
involves testing its identity against the identity of the
first item in the group; you can use the Kaysian
Method for this:

count(. | key(k e y - n a m e ,
g r o u p i n g - p r o p e r t y)[1]) = 1

Thus, to get the first items in each group, you can
use the following expression:

i t e m - n o d e - t e s t [count(. | key(k e y - n a m e ,
g r o u p i n g - p r o p e r t y)[1]) = 1]

The completed template is similar to the one
above for grouping by position, but with different
ways of selecting the first item in each group and the
rest of the items in each group. First, apply templates
to the first nodes in a group in group mode:

<xsl:apply-templates select=" i t e m - n o d e - t e s t
[count(. | key(k e y - n a m e ,
g r o u p i n g - p r o p e r t y)[1]) = 1]"
mode="group" />

Have a template matching the items in g r o u p
mode, which gathers the group together and adds ele-
ments around it. To give the content of the group,
apply templates to the items in the group in it e m
mode:

<xsl:template match="i t e m - n o d e - t e s t "
m o d e = " g r o u p " >

< g r o u p i n g - e l e m e n t > g r o u p - h e a d e r
<xsl:apply-templates select="key(k e y - n a m e ,

g r o u p i n g - p r o p e r t y)" mode="item" />
g r o u p - f o o t e r < / g r o u p i n g - e l e m e n t >

< / x s l : t e m p l a t e >

Finally, have a template that matches the items in
item mode to give the output for each item within the
group:

<xsl:template match="i t e m - n o d e - t e s t "
mode="item"> i t e m - c o n t e n t < / x s l : t e m p l a t e >

Organizing Stylesheets
XSLT was originally developed as a means of restruc-
turing and creating formatting objects for a piece of
XML so that it could be presented in a human-
readable way. XSLT is still used to transform XML
into presentable formats like formatting objects,
HTML and WML, but it’s also being used as a gener-
ic means for transforming XML into other XML
vocabularies in order to share information between
applications.

There are thus four general types of stylesheets in
use, depending on the type of XML vocabulary that’s
being transformed from and the type of document
that it’s being transformed to:

Data to Data—translating between XML
vocabularies, filtering data, and typical B2B;
Data to Document—transforming for presentation
and typical B2C;
Document to Data—document analysis; and
Document to Document—transforming for
different presentation and filtering content.

When the input and output formats are similar to
each other, such as in data-to-data and document-to-
document transformations, then the structure of the
input is usually the driving force behind the structure
of the output. On the other hand, when they are very
different, the structure desired for the output drives
the way the input is processed.

This distinction is mirrored in the stylesheets:
when the input drives the output, then push structures
are used; when the output is the driving force, then
pull structures are used. Push stylesheets involve a lot
of applying templates, letting the XSLT processor and
the structure of the input determine which templates
should be applied when. Pull stylesheets involve pick-
ing bits of information from the input; this can still
involve applying templates but is more likely to
involve applying them to specific nodes or calling
named templates.

In the rest of this section, I’ll look at two exam-
ples. The first is the basic copying stylesheet, which
works wholly on the push principle and can be used
to filter out information from a document or some
XML data. The second is a stylesheet that constructs
a document based on some XML data, such as creat-
ing a letter based on customer information.

The Duplicating Stylesheet
The following stylesheet can be used to create a logi-
cal copy of the input XML:

<25>

XSLT DESIGN PATTERNSinterChange SEPTEMBER 2001

<xsl:stylesheet version="1.0"
x m l n s : x s l = " h t t p : / / w w w . w 3 . o r g / 1 9 9 9 / X S L /
T r a n s f o r m " >

<!-- copy all elements and their attributes
and content recursively -->

<xsl:template match="*">
< x s l : c o p y >

<xsl:apply-templates select="@*" />
<xsl:apply-templates />

< / x s l : c o p y >
< / x s l : t e m p l a t e >

<!-- copy all attributes, comments and pro
cessing instructions -->

<xsl:template match="@*|comment()
| p r o c e s s i n g - i n s t r u c t i o n () " >
<xsl:copy-of select="." />

< / x s l : t e m p l a t e >

< / x s l : s t y l e s h e e t >

Note that I said “logical copy.” Running the above
stylesheet will generate a document tree for the input
document and then output a serialized version of a
copy of this tree. This means that there might be
changes such as the addition of namespace declara-
tions, changes to the quotes used around attributes or
even the addition of defaulted attributes from the
XML DTD. These changes don’t alter the logical con-
tent of the document, but they might alter how it
looks.

This stylesheet can be used as the basis for various
different stylesheets. It’s ideal if you want to keep
your document basically as it is but make just a few
changes here and there. One stylesheet that I base on
it is a reformatting stylesheet. I strip all the white-
space-only text from the tree:

<xsl:strip-space elements="*" />

get rid of leading and trailing whitespace from text
nodes:

<xsl:template match="text()">
<xsl:value-of
select="normalize-space()" />

< / x s l : t e m p l a t e >

and get the XSLT processor to output it nicely
indented for me:

<xsl:output indent="yes" />

You can use it to filter out nodes that you don’t
want. For example, if the difficulty of a particular

section were indicated through a d i f f i c u l t y
attribute on each s e c t i o n element, then I could fil-
ter out all the difficult sections by adding the follow-
ing template:

<xsl:template match="section
[@difficulty = 'difficult']" />

You can also use it to add nodes. For example, to
add id attributes to every element to hold a unique
ID for each, I could change the element-matching
template in the coyping stylesheet to

<xsl:template match="*">
< x s l : c o p y >

<xsl:attribute name="id">
<xsl:value-of

select="generate-id()" />
< / x s l : a t t r i b u t e >
<xsl:apply-templates select="@*" />
<xsl:apply-templates />

< / x s l : c o p y >
< / x s l : t e m p l a t e >

The Stylesheet Template
In some cases, you may be interested in simply pick-
ing information out of the input XML to insert into
an output document. The design that XSLT provides
for this is the “Literal Result Element as Stylesheet”
stylesheet. With this type of stylesheet, the user can
write a stylesheet as if she or he is writing the output
document, with a few XSLT instructions indicating
where content from the input should be included.

<html xsl:version="1.0"
x m l n s : x s l = " h t t p : / / w w w . w 3 . o r g / 1 9 9 9 / X S L /
T r a n s f o r m " >
< h e a d >

<title>Statement for Account
<xsl:value-of select="Statement/

@AccountNum" /></title>
< / h e a d >
< b o d y >

<h1>Account <xsl:value-of
select="Statement/@AccountNum" /></h1>
<p>For <xsl:value-of select=

"Statement/AccountHolder" /></p>
<hr />
<xsl:for-each

s e l e c t = " S t a t e m e n t / T r a n s a c t i o n " >
. . .

< / x s l : f o r - e a c h >
<hr />
<p class="disclaimer">

. . .
< / p >

<26>

SEPTEMBER 2001 interChange XSLT DESIGN PATTERNS

< / b o d y >
< / h t m l >

There are two disadvantages to this approach.
One is that most people who design pages for the
Web or write formal letters don’t want to have to
learn XSLT and XPath. The people who write the
applications need to allow them to write templates
without involving any weird syntax. The second is
that when a literal result element is used as the
stylesheet document element, you’re very restricted in
the XSLT that you can use: you can’t include tem-
plates of any kind, you can’t import anything, you
can’t specify the output method, and so on.

Because of these restrictions, a common applica-
tion design is to allow designers to create template
documents that hold the desired structure for the out-
put while programmers write XSLT stylesheets that
take these template documents, along with some
XML data, and process them together to produce the
desired output. The designers use special tags within
the template to indicate where in the page informa-
tion from the XML data should be entered. In
essence, this turns the pull method used in the above
stylesheet into a push method instead: the document
template is used to drive the output.

The easiest way to manage this setup is to use two
namespaces within the template document: one for
the literal output and one for the places where infor-
mation from the XML data should be inserted. For
example, with the above you might have:

<html xmlns="http://www.w3.org/1999/xhtml"
x m l n s : d a t a = " h t t p : / / w w w . b a n k . c o . u k /
a c c o u n t d a t a " >

< h e a d >
<title>Statement for Account
<data:AccountNum /></title>

< / h e a d >
< b o d y >

<h1>Account <data:AccountNum /></h1>
<p>For <data:AccountHolder /></p>
<hr />
<data:Transactions />
<hr />
<p class="disclaimer">

. . .
< / p >

< / b o d y >
< / h t m l >

The stylesheet needs to run on either the XML
data or the template; it doesn’t particularly matter
which, although as the identity of the other file
should either be hard coded or passed as a parameter

into the stylesheet, it makes sense to use the more
changeable of the two as the source. It needs to run
over the template, copying elements in the output
namespace and defining templates to be run on the
elements in the data namespace that pick the relevant
information from the XML data and process it. A
basic stylesheet might look like this:

<xsl:stylesheet version="1.0"
x m l n s : x s l = " h t t p : / / w w w . w 3 . o r g / 1 9 9 9 / X S L /
T r a n s f o r m "
x m l n s : o u t = " o u t p u t - n a m e s p a c e - U R I "
x m l n s : r e f = " d a t a - r e f e r e n c e - n a m e
s p a c e - U R I "
x m l n s : d a t a = " d a t a - n a m e s p a c e - U R I " />

<!-- root node of the template document -->
<xsl:variable name="template"
s e l e c t = " d o c u m e n t (' t e m p l a t e . x m l ')" />

<!-- root node of the <abbrev>XML
< / abbrev> data -->

<xsl:variable name="data" select="/" />

<!-- process the template document -->
<xsl:template match="/">

<xsl:apply-templates
select="$template/*" />

< / x s l : t e m p l a t e >

<!-- copy elements in the output
namespace -->

<xsl:template match="out:*">
< x s l : c o p y >

<xsl:apply-templates select="@*" />
<xsl:apply-templates />

< / x s l : c o p y >
< / x s l : t e m p l a t e >

<!-- copy text, attributes in the output
namespace, and any unprefixed attributes
on elements in the output namespace -->

<xsl:template match="text() | @out:* |
o u t : * / @ * " >
<xsl:copy-of select="." />

< / x s l : t e m p l a t e >

<!-- process elements that are references
to the <abbrev>XML</abbrev> data by
retrieving that data -->

<xsl:template match="ref: r e f e r e n c e - e l e m e n t " >
v a l u e - o f - r e l e v a n t - d a t a < / x s l : t e m p l a t e >

. . .
</xsl:stylesheet>

<27>

XSLT DESIGN PATTERNSinterChange SEPTEMBER 2001

XSLT DESIGN PATTERNS

<28>

SEPTEMBER 2001 interChange

Combining Multiple Stylesheets
When XSLT authors have several stylesheets that
work on the same data, they often start to wonder
about having a single stylesheet that takes a parame-
ter and decides, according to that parameter, which of
the stylesheets to use to transform the data. The pat-
tern that they come up with for this is to conditional-
ly include the stylesheet that they want based on the
parameter. Unfortunately, that doesn’t work: XSLT
doesn’t support conditional inclusion of stylesheets.

So how do you do it? One way is to get a scripting
language to decide which stylesheet to use, but I’m
focusing on XSLT solutions here. The XSLT solution
is to have a single central stylesheet, import all the
stylesheets that you want to combine into it, and then
use nodes to only use the templates from one of them.

The first step is to identify any templates that are
used in all the stylesheets that you have and put them
either within the central stylesheet or within a new
utility stylesheet that is imported into all the others.
The latter option is better because it means that the
individual stylesheets can still work indpendently.

The second step is to add a node to each of the
unmoded templates within the stylesheets that you’re
combining. The nodes have to be different for each
stylesheet so that the templates don't clash; using the
stylesheet name might be one way of ensuring that.
Any x s l : a p p l y - t e m p l a t e s instructions that don’t
include a node should have this node specified as
well.

The third step is to add a root-node-matching tem-
plate to each of the stylesheets that will let you run
them individually. This template should apply tem-
plates to the root node in the stylesheet mode:

<xsl:template match="/">
<xsl:apply-templates select="."
m o d e = " s t y l e s h e e t - m o d e " />

< / x s l : t e m p l a t e >

Once that’s added, you should be able to run each
of the stylesheets on its own as if nothing has
changed.

The final step is to construct the central stylesheet.
This stylesheet should simply import all the other
stylesheets, define the parameter(s) that identify which
stylesheet should be used, and have a single template
that directs the processing to the relevant stylesheet.
Note that you have to use an x s l : c h o o s e for this
because the mode attribute on x s l : a p p l y -
t e m p l a t e s is not an attribute value template.

<xsl:stylesheet version="1.0"
x m l n s : x s l = " h t t p : / / w w w . w 3 . o r g / 1 9 9 9 / X S L /
Transform" />

<!-- import stylesheets -->
<xsl:import href="s t y l e s h e e t 1 . x s l " />
<xsl:import href="s t y l e s h e e t 2 . x s l " />
. . .

<!-- define parameter -->
<xsl:param name="processing-mode" />

<!-- direct processing -->
<xsl:template match="/">

< x s l : c h o o s e >
<xsl:when test="$processing-mode =

'm o d e 1 " >
<xsl:apply-templates select="."
m o d e = " s t y l e s h e e t 1 - m o d e " />

< / x s l : w h e n >
<xsl:when test="$processing-mode =
'm o d e 2 " >
<xsl:apply-templates select="."
m o d e = " s t y l e s h e e t 2 - m o d e " />

< / x s l : w h e n >
. . .
< x s l : o t h e r w i s e >

<xsl:apply-templates select="."
m o d e = " d e f a u l t - m o d e " />

< / x s l : o t h e r w i s e >
< / x s l : c h o o s e >

< / x s l : t e m p l a t e >

< / x s l : s t y l e s h e e t >

Conclusions
In this paper, I’ve gone through some of the design
patterns that have been developed for XSLT.
Naturally, this paper doesn’t describe all the things
that you want to do with XSLT, or all the ways of
solving the problems that are discussed here. But I
hope it has given you a taste of some of the guidelines
that have been developed for its use.

XSLT is still quite a young language and, with
XSLT 1.1 on the horizon and countless extension ele-
ments and functions being tried and tested, a con-
stantly evolving one. As XSLT grows, it may well
come to include easier ways to tackle some of the
problems addressed above in a simpler fashion than
the methods I’ve described here. I hope that these
design patterns do not stand the test of time: there
should be easier ways of accomplishing the same
things, and, as XSLT continues to be developed, no
doubt there will be.

One of the great features of XSLT is its extensibili-

<29>

September

17–20 September 2001
XML World 2001: The XML Technologies
Cornerstone Event
San Francisco, California, U.S.A.
Contact: rwellige@xmlworld.org,
http://www.xml-world.org/xmlsan01/index.htm

19–21 September 2001
XML One : Amsterdam
Amsterdam, The Netherlands
Contact: www.xmlone-amsterdam.com

XML One: Amsterdam will provide an intensive
three-day, three-track technical program offering intu-
itive, neutral, and focused training.

24–25 September 2001
Integrating XML and EDI
San Francisco, California, U.S.A.
Contact : www.oasis-open.org/events/index.shtml

This two-day conference offers information on facili-
tating business processes, increasing operational effi-
ciency, and strengthening trading relationships using
RosettaNet Standards.

30 September–4 October 2001
XML One & Web Services One
San Jose, California, U.S.A.
Doubletree Hotel
Contact : www.xmlconference.com/sanjose

The West Coast’s premier XML training event is co-
locating with the new Web Services conference.
Attendees may register for either conference or both.

Calendar

If you know of any events that we should include in this listing, please let us know about it through the contact
details at the front of interChange.

CALENDARinterChange SEPTEMBER 2001

ty. Already, we’ve seen the power of that with the var-
ious XSLT processors adopting their own extension
elements and functions, some of which have been
incorporated into XSLT 1.1. With XSLT 1.1 and the
xsl:script element, we, as users, will be able to
add to this spirit of extension, testing and evolution.

No doubt, as XSLT grows and evolves, we will
find new things that we want to do with it, and new
design patterns will gradually emerge for doing them.
If you discover one, I hope you'll share it so that we
as a community can evolve along with XSLT.

My thanks to those who shared the design pat-
terns that I've described above—Mike Kay, Oliver
Becker, David Allouche, Wendell Piez, and Steve
Muench—as well as the other fine folks on XSL-List
who have contributed greatly to their discussion and
documentation, especially Dave Pawson, David
Carlisle, Dimitre Novatchev, and Mike Brown.

Jeni Tennison is an independent consultant specializ -
ing in XML+XSLT application design and develop -
ment, technical authoring, tutoring and mentoring of
XML and XSLT, and training course development
and delivery in XSLT, data modeling, and XML
Schemas. She was previously a senior knowledge engi -
neer and security controller with Epistemics Ltd. She
holds the Ph.D. in psychology and artificial intelli -
gence from the University of Nottingham, where her
research focused on Web communities and knowledge
engineering, including the development of a MOO-
based HTTP server that formed the basis of a collab -
orative knowledge server.

CALENDAR SEPTEMBER 2001 interChange

<30>

The conferences run 30 September–4 October, with
exhibits 1–2 October.

October

8 –11 October 2001
XML DevCon—Europe—Fall
Olympia Conference Centre, London, U.K.
Contact : http://www.camelot.com

Presented by overwhelming demand, this will be the
most sophisticated XML event to come to London in
2001.

22–25 October 2001
XML Edge 2001
Santa Clara, California, U.S.A.
Contact: http://www.oasis-
open.org/events/index.shtml

This conference program will offer information on
XML and related technologies, XML repositories and
schemas, XSL/XSLT/XNTML, JAXP/DOM2/SAX,
XML and technologies, XML and databases, real-
world case studies, and XML applications.

November

5–8 November 2001
XML Asia Pacific
Sydney, Australia
Contact : www.oasis-open.org/events/index.shtml

This year’s conference shows how new XML
improvements over the last 12 months have taken the
language from theoretically important to practical
and essential to the growth of the information sector.
Industry’s key figures will present their insights into
how XML is emerging, how it can be applied, and
how to be a part of the process.

20–21 November 2001
Forum XML & e-Business Integration
Paris, France
Contact : http://www.technoforum.fr/
Pages/forumXXML01/index.html

This event is dedicated to XML for the French mar-
ket. Among the topics to be covered are Web Services,
Enterprise Application Integration (EAI) and applica-
tion servers, Corporate Portals architectures and
Content management, EDI and ebXML, Supply-
Chain Integration, E-marketplaces, B2B platforms,
component-based architectures, XML and J2EE, and
XML and data modeling.

27–30 November 2001
2nd International Workshop on Conceptual Modeling
Approaches for e-Business
Yokohama, Japan
Contact : www.oasis-open.org/events/index.shtml

This workshop is being held in conjunction with the
20th International Conference on Conceptual
Modeling. The scope of the workshop is very much in
sync with what OASIS is doing with the United
Nations CEFACT in ebXML. Please submit all topics
and/or questions to Professor Heinrich Mayr
(mayr@ifit.uni-klu.ac.at).

December

9–14 December 2001
XML 2001
Walt Disney World Dolphin Hotel
Orlando, Florida, U.S.A.
Contact : http://www.gca.org/attend/2001_confer-
ences/xml_2001/

This conference will feature top-quality tutorials and
talks that will help attendees understand what works
now and what doesn’t, as well as provide glimpses
into the future. The attendees at XML 2001 will hear
firsthand from the experts which products will solve
their problems and which methodologies will meet
their needs.

Please note that we are closing out the Bookstore. If you would like to order any of the following books, now is
the time!

Your order can be placed by post to the ISUG Bookstore, Copse House, 15 Upton Close, Swindon, Wiltshire,
SN25 4UL. UK, or by telephone or fax +44 (0) 1793 721106 or email: yvonne@isug.freeserve.co.uk

Cheques should be made payable to the International SGML/XML Users’ Group, or supply an official order or
order reference if you wish your organization to be invoiced.

Clearance Sale: ALL books at half-price while stocks last!

Publication Title List Price Copies Member Price Item Total

ISO 8879 SGML (includes Amendment 1) £140.00 £60.00

ISO 8879 SGML Amendment 1 only £9.00 £3.00

ISO 9069 SGML Document Interchange Format (SDIF) £31.00 £15.00

ISO/TR 9544 Vocabulary of Computer-assisted Publishing £81.00 £36.00

ISO/TR 9573 Techniques for Using SGML £131.00 £50.00

ISO 10744 HyTime £131.00 £50.00

ISO 12083 Information and documentation
—Electronic manuscript preparation and markup £147.00 £65.00

ISO 10744 Annex B Supplementary Materials (ask for list) N/A £14.00

L. Alschuler: ABCD . . . SGML A Users’ Guide to
Structured Information £29.50 £14.75

N. Bradley: The Concise SGML Companion £19.95 £9.95

M. Bryan: An Author’s Guide to SGML £27.50 £13.75

M. Colby, D.S. Jackson: Special Edition Using SGML £46.99 £23.50

S.J. DeRose/D.G.Durand: Making Hypermedia Work £59.50 £29.75

S.J. DeRose: The SGML FAQ Book £46.25 £23.25

T. Donovan: Industrial Strength SGML: An Introduction
to Enterprise Publishing £26.95 £13.50

International SGML/XML Users’ Group
Bookstore List

<31>

interChange SEPTEMBER 2001 BOOKSTORE LIST

B. DuCharme: SGML CD £39.99 £19.95

C. Ensign: $GML, the Billion Dollar Secret £18.95 £9.50

C.F. Goldfarb: The SGML Handbook £50.00 £25.00

C.F. Goldfarb, S. Pepper, C. Ensign: SGML Buyer’s Guide £43.99 £21.95

R.A. Jelliffe: The SGML Cookbook B/CD £43.75 £21.95

E. Maler & J. El Andaloussi: Developing SGML DTDs
from Text to Model to Markup £39.95 £19.95

S. McGrath: Parseme 1st: SGML for Software Developers £26.95 £13.50

Y. Rubinsky, M. Maloney: SGML on the Web £28.99 £14.50

J.M. Smith: SGML and Related Standards £31.50 £15.75

R.C. Turner, T.A. Douglas & A.J. Turner: Readme
1st: SGML for Writers and Editors £29.95 £14.95

B. von Hagen: SGML for Dummies £28.99 £14.50

E. van Herwijnen: Practical SGML, 2nd edition £56.95 £28.50

SoftQuad, SGML Primer £14.00 £7.00

Bulletin Back Issues:
Volumes 1, 2, 3, 4 (price per volume) £18.00 £12.00

Newsletter Back Issues:
Volume 1, Issues 1–10, 11–20, 21–31 (price per set) £25.00 £20.00

Volume 2, Issues 1–4 (set) £20.00 £15.00

Volume 3, Issues 1–4 (set) £20.00 £15.00

Volume 4, Issues 1–4 (set) £20.00 £15.00

Volume 5, Issues 1–4 (set) £20.00 £15.00

Postage & Packing £2.50 (each book)

Total of Order

Clearance Sale: ALL books at half-price while stocks last!

<32>

BOOKSTORE LIST SEPTEMBER 2001 interChange

